scholarly journals Effect of Fly Ash and Fibres on Strength and Permeability Characteristics of Pervious Concrete

2019 ◽  
Vol 8 (4) ◽  
pp. 12089-12093

Conventional normal cement concrete is generally used as construction material of buildings. The impervious nature of concrete contributes to the increased water runoff into drainage system, over-burdening the infrastructure and causing excessive flooding in built-up areas. Pervious concrete has become significantly popular during recent decades, because of its potential contribution in solving environmental issues. Pervious concrete is a type of concrete with significantly high water permeability compared to conventional concrete. It has been mainly developed for draining water from surface to underground, so that storm water runoff is reduced. Due to high water permeability then normal concrete, pervious concrete has very low compressive strength. The characteristic of high permeability of pervious concrete contributes to its advantage in storm water management. However, the mechanical property such as low compressive strength limits the application of pervious concrete to the roads having light volume traffic. It is observed form previous studies that the strength of pervious concrete can be enhanced by substituting some of the cement with other materials, such as fly ash and fibres. The objective of present study was to make pervious concrete mix with high strength and pore properties by partial replacement of cement with fly ash and using steel and glass fibres. For this purpose cubes beams were casted with and without replacement of cement with flyash and addition of steel and glass fiber by total weight of concrete mix. Test such as compressive strength, flexural strength, total porosity and Infiltration rate were performed. It was observed addition of fly ash decreased the compressive as well as flexural strength of the pervious concrete. Further, incorporation of 1% steel fibres by weight of concrete mix was found adequate in achieving high strength and permeability, when compared to control mix concrete

2018 ◽  
Vol 11 (1) ◽  
pp. 176 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Longhui Wang ◽  
Yafeng Gong

Pervious concretes, as sustainable pavement materials, have great advantages in addressing a number of environmental issues. Fly ash, as the industrial by-product waste, is the most commonly used as cement substitute in concrete. The objective of this paper is to study the effects of waste fly ash on properties of pervious concrete. Fly ash was used to replace cement with equivalent volume method at different levels (3%, 6%, 9%, and 12%). The control pervious concrete and fly ash modified pervious concrete were prepared in the laboratory. The porosity, permeability, compressive strength, flexural strength, and freeze–thaw resistance of all mixtures were tested. The results indicated that the addition of fly ash decreased the early-age (28 d) compressive strength and flexural strength, but the long-term (150 d) compressive strength and flexural strength of fly ash modified pervious concrete were higher than that of the early-age. The adverse effect of fly ash on freeze–thaw resistance of pervious concrete was observed when the fly ash was added. The porosity and permeability of all pervious concrete mixtures changed little with the content of fly ash due to the use of equal volume replacement method. Although fly ash is not positive to the properties of pervious concrete, it is still feasible to apply fly ash as a substitute for cement in pervious concrete.


2018 ◽  
Vol 4 (4) ◽  
pp. 54
Author(s):  
Iis Nurjamilah ◽  
Abinhot Sihotang

ABSTRAKKajian karakteristik beton memadat sendiri yang menggunakan serat ijuk merupakan sebuah kajian yang dilakukan untuk mengetahui pengaruh penambahan serat ijuk terhadap karakteristik beton memadat sendiri (SCC). Beton memadat sendiri yang menggunakan serat ijuk (PFSCC) didesain memiliki campuran yang encer, bermutu tinggi (= 40 MPa) dan memiliki persentase kekuatan lentur yang lebih baik. PFSCC  didapatkan dari hasil pencampuran antara semen sebanyak 85%, fly ash 15%, superplastizicer 1,5%, serat ijuk 0%, 0,5%; 1%; 1,5%; 2% dan 3% dari berat binder (semen + fly ash), kadar air 190 kg/m3, agregat kasar 552,47 kg/m3 dan pasir 1.063 kg/m3. Semakin banyak persentase penambahan serat ijuk ke dalam campuran berdampak terhadap menurunnya workability beton segar. Penambahan serat ijuk yang paling baik adalah sebanyak 1%, penambahan tersebut dapat meningkatkan kekuatan tekan beton sebesar 13% dan lentur sebesar 1,8%.Kata kunci: beton memadat sendiri (SCC), beton berserat, beton memadat sendiri yang menggunakan serat ijuk (PFSCC), serat ijuk ABSTRACTThe study of characteristics self compacting concrete using palm fibers is a study conducted to determine the effect of adding palm fibers to characteristics of self compacting concrete (SCC). palm fibers self compacting concrete (PFSCC) is designed to have a dilute mixture, high strength (= 40 MPa), and have better precentage flexural strength. PFSCC was obtained from mixing of 85% cement, 15% fly ash, 1.5% superplastizicer, 0%, 0.5%, 1%, 1.5%, 2% and 3% palm fibers from the weight of binder  (cement + fly ash), water content 190 kg/m3, coarse aggregate 552.47 kg/m3 and sand 1,063 kg/m3. The more persentage palm fibers content added to the mixture makes workability of fresh concrete decreases. The best addition of palm fiber is 1%, this addition can increases the compressive strength 13% and flexural strength 1.8%.Keywords: self compacting concrete (SCC), fiber concrete, Palm fiber self compacting concrete (PFSCC), palm fiber


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2019 ◽  
Vol 276 ◽  
pp. 01008
Author(s):  
Fauzan ◽  
Rudy Kurniawan ◽  
Claudia Lovina A. N ◽  
Oscar Fitrah N ◽  
Putri Basenda T

The utilization of steel fiber from waste tyres can be an alternative to reduce waste tyres due to the increase of tyre production in Indonesia annually. Steel fiber from waste tyre can be added to concrete mix to improve the concrete properties. In this study, the effects of steel fiber waste tyre (SFWT) on high strength concrete containing fly ash was investigated experimentally. The content of fly ash in the high strength concrete is 30% of being partially replaced the cement weight. Steel fiber waste tyres are obtained from extracting the steel wire of the waste tyres and then cut into 4 cm long. The addition of SFWT on the high strength fly ash concrete is 0.5%, 1.0%, 1.5%, and 2% by concrete volume. The mechanical properties of concrete such as compressive strength, tensile strength, and flexural strength are tested at day 28. The test results show that the addition of 2 % SFWT on high strength fly ash concrete increase the compressive strength, tensile strength, and flexural strength of the concrete by around 9.99 %, 63.75 %, 18.18 %, respectively.


2017 ◽  
Vol 266 ◽  
pp. 278-282 ◽  
Author(s):  
Jul Endawati

Pervious concrete primarily is used as a means of storm water management. Taking into consideration the environment issues, the binder can also be formed by partially replaced Portland cement by cementitious materials, such as blast furnace slag fine powder, fly ash and silica fume. The combination of the binder materials was determined based on previous work, which composed of 56% Portland Composite Cement, 15% fly ash Type F, 26% air-cooled blast furnace slag from a local steel Industry and 3% condensed silica fume. The compressive strength of specimens with coarser aggregate was lower compared with the control pervious concrete, but still within the range of the requirement compressive strength according to ACI 522R-2010. The difference of the aggregate size affected the enhancement of the compressive strength. The flexural strength of pervious concrete with aggregate size of 9.5mm-12.5mm tend to be higher compared with that of pervious concrete with smaller aggregate size. Furthermore, the addition of 6% natural fine aggregate while applying higher water/cement ratio could be a contribution to the enhancement of the compressive and the flexural strength.


2018 ◽  
Vol 932 ◽  
pp. 136-140
Author(s):  
Mao Chieh Chi ◽  
Jiang Jhy Chang ◽  
Wei Chung Yeih

The purpose of this study is to discuss the properties of low water/cement ratio and high compressive strength pervious concrete. Two sizes of air-cooling electric arc furnace slag (EAFS), for the same size of 0.24 - 0.48 cm and 0.48 - 0.96 cm, were prepared as the coarse aggregates. Two water-to-cement ratios and three filled percentages (70, 80, and 90%) of voids by cement pastes were selected as variables. The unit weight, connected porosity, water permeability coefficient, compressive strength, and flexural strength of pervious concrete were conducted. Test results show that the pervious concrete with higher filled percentage of voids by cement paste has higher unit weight, compressive strength, and flexural strength and smaller connected porosity and water permeability coefficient. The lower the water/cement ratio and EAFS size, the superior the properties. At the water/cement ratio of 0.25, pervious concrete with EAFS size of 0.24 – 0.48 cm and 90% filled percentage of voids by cement pastes had the highest compressive strength of 35 MPa and flexural strength of 7 MPa.


In the present study, an attempt has been made to investigate strength and permeability of pervious concrete made with different combinations of aggregate sizes (20mm,12.5mm and 10mm) and different mix proportions using flyash and super platiciciser). The main objective of this investigation is to apply the pervious concrete through a footpath to improve groundwater recharge by finding out the best combination of grading of aggregates and also the mix proportion with fly ash for obtaining optimal permeability and strength. The effect of partial replacement of cement with fly ash and super plasticizer on the compressive strength and the water permeability of pervious concrete are investigated. The analysis of the test results indicated that the proposed combination of materials have increased the compressive strength significantly and also, the water permeability. Even though, the individual performances (maximum strength and maximum permeability) of some of the combinations obtained are good, but it is expected in the study to have reasonable values for both to use pervious concrete in the field. Hence, in this study, it is considered the intersection point on the strength versus permeability graph as the best combination. So, the combination with 40% of 20mm, 30% of 12.5 mm and 10mm and 10%flyash with 90% opc (53 grade) without super plasticizer considered as the best which gives 24 MPa and 15.6 mm/s permeability.. A footpath of size 1.2 m (width) x 0.25 m (thickness) x 19 m (length) is selected for laying pervious concrete in the form of number of panels. A constant discharge is applied on to the footpath in lateral direction and it is found that the absorption capacity of the laid mix in the field is 115.52 litres/ m length.


2013 ◽  
Vol 723 ◽  
pp. 361-367 ◽  
Author(s):  
Emiko Lim ◽  
Kiang Hwee Tan ◽  
Tien Fang Fwa

A study to achieve high-strength, high porosity and permeability pervious concrete pavement was carried out. First, the mix proportion in terms of cement content and coarse aggregate-cement ratio (CA/C) and water-cement (W/C) ratio were varied. Next, a mix proportion providing the optimal combination of strength and porosity was chosen, and polymer superplasticizers and short discrete fibers were added to examine their effect on the strength and porosity. Results showed that a water-cement ratio of 0.2 resulted in a dry and brittle mix that led to compressive strength less than 15 MPa but a high permeability rate of approximately 20mm/s. A mix with CA/C ratio of 4.25 resulted in compressive strength of 13.9 MPa, flexural strength of 3MPa and high porosity of more than 20%. Using comb polymer superplasticier and 2% steel fibers resulted in compressive strength of 25.1 MPa and flexural strength of 3.6 MPa at 28 days without compromising on the porosity.


2013 ◽  
Vol 864-867 ◽  
pp. 1923-1928
Author(s):  
Yue Xu ◽  
Jian Xi Li ◽  
Li Li Kan

A new kind of high strength cementitious material is made from phosphogypsum (PG), active carbon and fly-ash. Through the orthogonal research, it was showed that the calcination temperature, retention time, dosage of active carbon and fly ash on the compressive strength of cementitious binder are the most important. The result also showed that, in the conditions of temperature 1200°C, time retention 30 min, dosage of active carbon 10%, dosage of fly ash 5%, the compressive strength of the cementitious material for 3d and 28d could reach to 46.35MPa and 92.70MPa, the content of sulfur trioxide was 11.60% accordingly. A lot of active mineral materials, such as dicalcium silicate, tricalcium silicate, tricalcium aluminate were formed in the calcination. The C-S-H gel, calcium hydroxide and ettringite were found in 3d and 28d hydrates. It is found that the lime saturation ratio and silica modulus need to be control between 0.40~0.65 and 4~8 in order to produce high strength cementitious material.


Sign in / Sign up

Export Citation Format

Share Document