scholarly journals Application of Direct Displacement Based Design of Reinforced Concrete Frames Subjected to Earthquake Loads

2020 ◽  
Vol 8 (5) ◽  
pp. 5153-5160

Numerous studies are reported in literature on performance evaluation and rehabilitation of building however, limited studies are reported on performance based design of new buildings. Displacement based design procedure is a new method which is not available in Indian building design codes. An effort has been done to investigate the Direct Displacement Based Design (DDBD) for four, eight and twelve story regular RC frame buildings proposed by Priestley et al, using Indian code Response Spectrum for Zone V which is considered as a very high intensity seismic risk zone for life safety and collapse prevention performance levels. Nonlinear time history analysis is carried out for available ground motion and compared with the performance levels (in terms of drift, displacement). Observations show that design displacement reduction factor should be different for life safety and collapse prevention levels. The effective damping increases as the height of the building increases and is higher for collapse prevention.

2009 ◽  
Vol 25 (3) ◽  
pp. 583-605 ◽  
Author(s):  
Wei Chiang Pang ◽  
David V. Rosowsky

This paper presents a direct displacement design (DDD) procedure that can be used for seismic design of multistory wood-framed structures. The proposed procedure is applicable to any pure shear deforming system. The design procedure is a promising design tool for performance-based seismic design since it allows consideration of multiple performance objectives (e.g., damage limitation, safety requirements) without requiring the engineer to perform a complex finite element or nonlinear time-history analysis of the complete structure. A simple procedure based on normalized modal analysis is used to convert the code-specified acceleration response spectrum into a set of interstory drift spectra. These spectra can be used to determine the minimum stiffness required for each floor based on the drift limit requirements. Specific shear walls can then be directly selected from a database of backbone curves. The procedure is illustrated on the design of two three-story ATC-63 archetype buildings, and the results are validated using nonlinear time-history analysis.


Author(s):  
Matthew J. Fox ◽  
Timothy J. Sullivan ◽  
Katrin Beyer

Reinforced concrete coupled walls are a common lateral load resisting system used in multi-storey buildings. The effect of the coupling beams can improve seismic performance, but at the same time adds complexity to the design procedure. A case study coupled wall building is designed using Force-Based Design (FBD) and Direct Displacement-Based Design (DDBD) and in the case of the latter a step by step design example is provided. Distributed plasticity fibre-section beam element numerical models of the coupled walls are developed in which coupling beams are represented by diagonal truss elements and experimental results are used to confirm that this approach can provide a good representation of hysteretic behaviour. The accuracy of the two different design methods is then assessed by comparing the design predictions to the results of non-linear time-history analyses. It is shown that the DDBD approach gives an accurate prediction of inter-storey drift response. The FBD approach, in accordance with NZS1170.5 and NZS3101, is shown to include an impractical procedure for the assignment of coupling beam strengths and code equations for the calculation of coupling beam characteristics appear to include errors. Finally, the work highlights differences between the P-delta considerations that are made in FBD and DDBD, and shows that the code results are very sensitive to the way in which P-delta effects are accounted for.


2006 ◽  
Vol 22 (3) ◽  
pp. 631-662 ◽  
Author(s):  
Hazim Dwairi ◽  
Mervyn Kowalsky

Through the use of nonlinear time-history analysis, the displacement patterns of bridges subjected to transverse seismic attack are investigated. The variables considered in the study consist of bridge geometry, superstructure stiffness, substructure strength and stiffness, abutment support conditions, and earthquake ground motion. A series of three inelastic displacement pattern scenarios were identified: (1) rigid body translation (2) rigid body translation with rotation, and (3) flexible pattern. A relative stiffness index that is a function of the superstructure and substructure stiffness was shown to be a key variable in determining the type of displacement pattern a bridge is likely to follow. The results described in this paper have significant implications for performance-based seismic design procedures such as direct displacement-based design (DDBD). If the displacement pattern for a bridge can be identified with significant confidence at the start of the design process, application of approaches such as DDBD can be simplified. However, if the characteristics of the bridge are such that prescribing a pattern at the start of the process is not feasible, then an alternative approach must be employed for DDBD to proceed. Of the three displacement pattern scenarios defined in this paper, the first two require minimal effort in the design. For the third scenario, an iterative algorithm is proposed. Lastly, as a means for verification and demonstration, a series of bridges with various configurations was designed using DDBD for rigid body translation and flexible pattern scenarios. The designs for the flexible scenario showed good agreement with selected target profiles for bridges with up to five spans.


Author(s):  
Timothy J. Sullivan

An innovative application of Direct Displacement-Based Design (DBD) is presented for a modern 8-storey dual system structure consisting of interior concrete walls in parallel to a number of large steel eccentrically braced frames, fitted with visco-elastic dampers at link positions. The innovative DBD methodology lets the designer directly control the forces in the structure by choosing strength proportions at the start of the design procedure. The strength proportions are used to establish the displaced shape at peak response and thereby establish the equivalent single-degree-of-freedom system design displacement, mass and effective height. A new simplified formulation for the equivalent viscous damping of systems possessing viscous dampers is proposed which also utilises the strength proportions chosen by the designer at the start of the process. The DBD approach developed is relatively quick to use, enabling the seismic design of the 8-storey case study structure to be undertaken without the development of a computer model. To verify the ability of the design method, non-linear time-history analyses are undertaken using a suite of spectrum-compatible accelerograms. These analyses demonstrate that the design solution successfully achieves the design objectives to limit building deformations, and therefore damage.


Author(s):  
Timothy J. Sullivan

An innovative application of Direct Displacement-Based Design (DBD) is presented for a modern 8-storey dual system structure consisting of interior concrete walls in parallel to a number of large steel eccentrically braced frames, fitted with visco-elastic dampers at link positions. The innovative DBD methodology lets the designer directly control the forces in the structure by choosing strength proportions at the start of the design procedure. The strength proportions are used to establish the displaced shape at peak response and thereby establish the equivalent single-degree-of-freedom system design displacement, mass and effective height. A new simplified formulation for the equivalent viscous damping of systems possessing viscous dampers is proposed which also utilises the strength proportions chosen by the designer at the start of the process. The DBD approach developed is relatively quick to use, enabling the seismic design of the 8-storey case study structure to be undertaken without the development of a computer model. To verify the ability of the design method, non-linear time-history analyses are undertaken using a suite of spectrum-compatible accelerograms. These analyses demonstrate that the design solution successfully achieves the design objectives to limit building deformations, and therefore damage.


Author(s):  
Andrea Belleri ◽  
Simone Labò

AbstractThe seismic performance of precast portal frames typical of the industrial and commercial sector could be generally improved by providing additional mechanical devices at the beam-to-column joint. Such devices could provide an additional degree of fixity and energy dissipation in a joint generally characterized by a dry hinged connection, adopted to speed-up the construction phase. Another advantage of placing additional devices at the beam-to-column joint is the possibility to act as a fuse, concentrating the seismic damage on few sacrificial and replaceable elements. A procedure to design precast portal frames adopting additional devices is provided herein. The procedure moves from the Displacement-Based Design methodology proposed by M.J.N. Priestley, and it is applicable for both the design of new structures and the retrofit of existing ones. After the derivation of the required analytical formulations, the procedure is applied to select the additional devices for a new and an existing structural system. The validation through non-linear time history analyses allows to highlight the advantages and drawbacks of the considered devices and to prove the effectiveness of the proposed design procedure.


Author(s):  
Dion Marriott

This paper discusses the application of the Structural Performance factor (SP) within a Direct Displacement-Based Design framework (Direct-DBD). As stated within the New Zealand loadings standard, NZS1170.5:2004 [1], the SP factor is a base shear multiplier (reduction factor) for ductile structures, i.e. as the design ductility increases, the SP factor reduces. The SP factor is intended to acknowledge the better-than-expected structural behaviour of ductile systems (both strength, and ductility capacity) by accounting for attributes of response that designers are unable to reliably estimate. The SP factor also recognizes the less dependable seismic performance of non-ductile structures, by permitting less of a reduction (a larger SP factor) for non-ductile structures. Within a traditional force-based design framework the SP factor can be applied to either the design response spectrum (a seismic hazard/demand multiplier), or as a base shear multiplier at the end of design (structural capacity multiplier) – either of these two approaches will yield an identical design in terms of the required design base shear and computed ULS displacement/drift demands. However, these two approaches yield very different outcomes within a Direct-DBD framework – in particular, if SP is applied to the seismic demand, the design base shear is effectively multiplied by (SP)2 (i.e. a two-fold reduction). This paper presents a “DBD-corrected” SP factor to be applied to the design response spectrum in Direct-DBD in order to achieve the intent of the SP factor as it applies to force-based design. The proposed DBD-corrected SP factor is attractive in that it is identical to the SP relationship applied to the elastic site hazard spectrum C(T) for numerical integration time history method of analysis within NZS 1170.5:2004 [1], SP,DDBD = (1+SP)/2.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940003 ◽  
Author(s):  
Xiaoyan Yang ◽  
Jing Wu ◽  
Jian Zhang ◽  
Yulong Feng

A novel structural wall with hinge support and buckling restrained braces (BRBs) set in the base (HWBB) is studied. HWBB can be applied to precast manufacturing due to its considerable ductility and the separate loading mechanism in HWBB–frame structure. In elastic stage, BRBs play a brace role to make the hinged wall resist horizontal forces like a shear wall. BRBs dissipate seismic energy through plastic and hysteresis effects after yielding and the damage is only concentrated in BRBs. The performance of an HWBB is equivalent to a shear wall structure with excellent ductility and stable energy dissipation capacity. Numerical analysis indicates that the hinged wall body in the HWBB well controls the deformation mode of the structure, avoiding the concentration of story drifts, thereby protecting the remaining parts of the structure. It is revealed that the moments of the wall body will generate significant increments after BRBs yielding, and the Seismic Intensity Superposition Method is proposed to calculate the moments. In this method, nonlinear response of an HWBB can be regarded as the sum of the responses of two elastic corresponding structures excited with two parts of the seismic intensity, respectively. Modes and moments equations of the hinged wall with uniform distribution of stiffness and mass are derived, and calculation results coincide with that of the nonlinear time history analysis (NHA). For a more general case, the white noise scan method is proposed to solve the structure’s natural characteristics and to further calculate the response. Finally, the post-yielding moment calculation method and the process based on design response spectrum are proposed. It is proved that the moments from proposed Seismic Intensity Superposition Method can envelop most of the moments from NHA, and it is a good estimate of the response of HWBB in nonlinear stage.


2005 ◽  
Vol 128 (3) ◽  
pp. 364-369 ◽  
Author(s):  
Y. M. Parulekar ◽  
G. R. Reddy ◽  
K. K. Vaze ◽  
K. Muthumani

Passive energy dissipating devices, such as elastoplastic dampers (EPDs) can be used for eliminating snubbers and reducing the response of piping systems subjected to seismic loads. Cantilever and three-dimensional piping systems were tested with and without EPD on shaker table. Using a finite element model of the piping systems, linear and nonlinear time-history analysis is carried out using Newmark’s time integration technique. Equivalent linearization technique, such as Caughey method, is used to evaluate the equivalent damping of the piping systems supported on elastoplastic damper. An iterative response spectrum method is used for evaluating response of the piping system using this equivalent damping. The analytical maximum response displacement obtained at the elastoplastic damper support for the two piping systems is compared with experimental values and time history analysis values. It has been concluded that the iterative response spectrum technique using Caughey equivalent damping is simple and results in reasonably acceptable response of the piping systems supported on EPD.


Sign in / Sign up

Export Citation Format

Share Document