scholarly journals Optimized Performance of IEEE 802.15.4e DSME for Internet of Things

2020 ◽  
Vol 9 (1) ◽  
pp. 2210-2213

: To enhance the reliability of the link and guarantee deterministic channel access, IEEE 802.15 TG4e has introduced DSME as an amendment to IEEE 802.15.4. In this article, we analyze the throughput and energy consumption of DSME mechanism. Further, we propose optimization framework to find contention window (CW) that can enhance the aggregate utility and minimize the energy consumption of a device. Results prove that the performance of DSME is improved by 80% using the optimal setting of CW. The results are finally validated using ns-3.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Kwang-il Hwang ◽  
Sung-wook Nam

In order to construct a successful Internet of things (IoT), reliable network construction and maintenance in a sensor domain should be supported. However, IEEE 802.15.4, which is the most representative wireless standard for IoT, still has problems in constructing a large-scale sensor network, such as beacon collision. To overcome some problems in IEEE 802.15.4, the 15.4e task group proposed various different modes of operation. Particularly, the IEEE 802.15.4e deterministic and synchronous multichannel extension (DSME) mode presents a novel scheduling model to solve beacon collision problems. However, the DSME model specified in the 15.4e draft does not present a concrete design model but a conceptual abstract model. Therefore, in this paper we introduce a DSME beacon scheduling model and present a concrete design model. Furthermore, validity and performance of DSME are evaluated through experiments. Based on experiment results, we analyze the problems and limitations of DSME, present solutions step by step, and finally propose an enhanced DSME beacon scheduling model. Through additional experiments, we prove the performance superiority of enhanced DSME.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 466 ◽  
Author(s):  
Farhan Masud ◽  
Abdul Abdullah ◽  
Ayman Altameem ◽  
Gaddafi Abdul-Salaam ◽  
Farkhana Muchtar

This paper proposes an improved Traffic Class Prioritization based Carrier Sense Multiple Access/Collision Avoidance (TCP-CSMA/CA) scheme for prioritized channel access to heterogenous-natured Bio-Medical Sensor Nodes (BMSNs) for IEEE 802.15.4 Medium Access Control (MAC) in intra-Wireless Body Area Networks (WBANs). The main advantage of the scheme is to provide prioritized channel access to heterogeneous-natured BMSNs of different traffic classes with reduced packet delivery delay, packet loss, and energy consumption, and improved throughput and packet delivery ratio (PDR). The prioritized channel access is achieved by assigning a distinct, minimized and prioritized backoff period range to each traffic class in every backoff during contention. In TCP-CSMA/CA, the BMSNs are distributed among four traffic classes based on the existing patient’s data classification. The Backoff Exponent (BE) starts from 1 to remove the repetition of the backoff period range in the third, fourth, and fifth backoffs. Five moderately designed backoff period ranges are proposed to assign a distinct, minimized, and prioritized backoff period range to each traffic class in every backoff during contention. A comprehensive verification using NS-2 was carried out to determine the performance of the TCP-CSMA/CA in terms of packet delivery delay, throughput, PDR, packet loss ratio (PLR) and energy consumption. The results prove that the proposed TCP-CSMA/CA scheme performs better than the IEEE 802.15.4 based PLA-MAC, eMC-MAC, and PG-MAC as it achieves a 47% decrease in the packet delivery delay and a 63% increase in the PDR.


2021 ◽  
Author(s):  
Peilin Chen

Abstract Energy consumption management and optimal use of node resources are key elements in the Internet of Things. In this study, a framework based on cognitive topology control that acts based on the LR−I learning automata and game on it, has been used to control power, channel and contention windows and to create preventive behavior in the network. Due to the limitations of nodes in the Internet of Things, the transfer of learning automata processing to the cloud, fog and edge has been investigated to increase lifespan, reduce memory consumption and increase processing power. The communication was done based on IPv6 protocol and IEEE 802.15.4 standard. The nodes also used the uIP lightweight protocol stack and the RPL lightweight routing protocol. In order to use the sixth version of the Internet Protocol in the IEEE 802.15.4 standard platform, the 6LoWPAN protocol has been used to compress and convert headers. Computing on fog nodes has also been used to perform game calculations on automata. Finally, the Cooja simulator was used in the Contiki operating system to evaluate the efficiency of the proposed method, which showed the superiority of the proposed method in energy consumption, memory usage and processing power compared to other methods that control power and channel.


2021 ◽  
Vol 7 ◽  
pp. e733
Author(s):  
Abdulrahman Sameer Sadeq ◽  
Rosilah Hassan ◽  
Azana Hafizah Mohd Aman ◽  
Hasimi Sallehudin ◽  
Khalid Allehaibi ◽  
...  

The development of Medium Access Control (MAC) protocols for Internet of Things should consider various aspects such as energy saving, scalability for a wide number of nodes, and grouping awareness. Although numerous protocols consider these aspects in the limited view of handling the medium access, the proposed Grouping MAC (GMAC) exploits prior knowledge of geographic node distribution in the environment and their priority levels. Such awareness enables GMAC to significantly reduce the number of collisions and prolong the network lifetime. GMAC is developed on the basis of five cycles that manage data transmission between sensors and cluster head and between cluster head and sink. These two stages of communication increase the efficiency of energy consumption for transmitting packets. In addition, GMAC contains slot decomposition and assignment based on node priority, and, therefore, is a grouping-aware protocol. Compared with standard benchmarks IEEE 802.15.4 and industrial automation standard 100.11a and user-defined grouping, GMAC protocols generate a Packet Delivery Ratio (PDR) higher than 90%, whereas the PDR of benchmark is as low as 75% in some scenarios and 30% in others. In addition, the GMAC accomplishes lower end-to-end (e2e) delay than the least e2e delay of IEEE with a difference of 3 s. Regarding energy consumption, the consumed energy is 28.1 W/h for GMAC-IEEE Energy Aware (EA) and GMAC-IEEE, which is less than that for IEEE 802.15.4 (578 W/h) in certain scenarios.


This paper provides a comparison between IEEE 802.11 and IEEE 802.15.4e standards in the context of Internet of Things (IoT). These emerging standards are the amendments of IEEE 802.11 and IEEE 802.15.4 to support IoT based applications. The 802.11 has a channel access scheme, Distributed coordination function (DCF). On the other hand, IEEE 802.15.4e introduces five MAC behavior mode. Among these five modes, DSME is well suited for IoT. A comparison between these two standards is discussed in this paper by using an analytical model and are validated through ns-3 simulations. Results show that the DSME show significant improvement in the performance of DSME when compared to the legacy IEEE 802.11 DCF.


2019 ◽  
Vol 01 (02) ◽  
pp. 31-39 ◽  
Author(s):  
Duraipandian M. ◽  
Vinothkanna R.

The paper proposing the cloud based internet of things for the smart connected objects, concentrates on developing a smart home utilizing the internet of things, by providing the embedded labeling for all the tangible things at home and enabling them to be connected through the internet. The smart home proposed in the paper concentrates on the steps in reducing the electricity consumption of the appliances at the home by converting them into the smart connected objects using the cloud based internet of things and also concentrates on protecting the house from the theft and the robbery. The proposed smart home by turning the ordinary tangible objects into the smart connected objects shows considerable improvement in the energy consumption and the security provision.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1627
Author(s):  
Giovanni Battista Gaggero ◽  
Mario Marchese ◽  
Aya Moheddine ◽  
Fabio Patrone

The way of generating and distributing energy throughout the electrical grid to all users is evolving. The concept of Smart Grid (SG) took place to enhance the management of the electrical grid infrastructure and its functionalities from the traditional system to an improved one. To measure the energy consumption of the users is one of these functionalities that, in some countries, has already evolved from a periodical manual consumption reading to a more frequent and automatic one, leading to the concept of Smart Metering (SM). Technology improvement could be applied to the SM systems to allow, on one hand, a more efficient way to collect the energy consumption data of each user, and, on the other hand, a better distribution of the available energy through the infrastructure. Widespread communication solutions based on existing telecommunication infrastructures instead of using ad-hoc ones can be exploited for this purpose. In this paper, we recall the basic elements and the evolution of the SM network architecture focusing on how it could further improve in the near future. We report the main technologies and protocols which can be exploited for the data exchange throughout the infrastructure and the pros and cons of each solution. Finally, we propose an innovative solution as a possible evolution of the SM system. This solution is based on a set of Internet of Things (IoT) communication technologies called Low Power Wide Area Network (LPWAN) which could be employed to improve the performance of the currently used technologies and provide additional functionalities. We also propose the employment of Unmanned Aerial Vehicles (UAVs) to periodically collect energy consumption data, with evident advantages especially if employed in rural and remote areas. We show some preliminary performance results which allow assessing the feasibility of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document