scholarly journals Travel Route Recommendation System using User Keyword Search

2020 ◽  
Vol 8 (6) ◽  
pp. 2052-2056

Travel and tourism is a field, which have been growing substantially over the past few decades. The competitiveness in marketing and need of fulfilling customer experience in travel have given many opportunities for today’s technological advancements to play a crucial role in it. Those technology aspects are Big Data and Data Mining. Data Mining uses technologies of statistics, mathematics, machine learning and artificial intelligence. It aims to classify original, valid, useful, potentially and understand correlations and patterns. Data mining with the help of Big Data - Hadoop can help analyze and derive information, which can increase the growth of industry and give accurate suggestion to customer. The reason of combining capabilities of Hadoop is it can handle all sorts of data such as Structured or Unstructured. The main objective of this project also revolves around the same principle giving the best Customer Experience. By combining the power of Data Analytics of data mining, Big Data and programming capabilities of Java, this project focuses on building a customer centric Keyword Aware Travel Route Framework.”

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 506 ◽  
Author(s):  
Faisal Mehmood ◽  
Shabir Ahmad ◽  
DoHyeun Kim

Nowadays researchers and engineers are trying to build travel route recommendation systems to guide tourists around the globe. The tourism industry is on the rise and it has attracted researchers to provide such systems for comfortable and convenient traveling. Mobile internet growth is increasing rapidly. Mobile data usage and traffic growth has increased interest in building mobile applications for tourists. This research paper aims to provide design and implementation of a travel route recommendation system based on user preference. Real-time big data is collected from Wi-Fi routers installed at more than 149 unique locations in Jeju Island, South Korea. This dataset includes tourist movement patterns collected from thousands of mobile tourists in the year 2016–2017. Data collection and analysis is necessary for a country to make public policies and development of the global travel and tourism industry. In this research paper we propose an optimal travel route recommendation system by performing statistical analysis of tourist movement patterns. Route recommendation is based on user preferences. User preference can vary over time and differ from one user to another. We have taken three main factors into consideration to the recommend optimal route i.e., time, distance, and popularity of location. Beside these factors, we have also considered weather and traffic condition using a third-party application program interfaces (APIs). We have classified regions into six major categories. Popularity of location can vary from season to season. We used a Naïve Bayes classifier to find the probability of tourists going to visit next location. Third-party APIs are used to find the longitude and latitude of the location. The Haversine formula is used to calculate the distance between unique locations. On the basis of these factors, we recommend the optimal route for tourists. The proposed system is highly responsive to mobile users. The results of this system show that the recommended route is convenient and allows tourists to visit maximum number of famous locations as compared to previous data.


2019 ◽  
Author(s):  
Meghana Bastwadkar ◽  
Carolyn McGregor ◽  
S Balaji

BACKGROUND This paper presents a systematic literature review of existing remote health monitoring systems with special reference to neonatal intensive care (NICU). Articles on NICU clinical decision support systems (CDSSs) which used cloud computing and big data analytics were surveyed. OBJECTIVE The aim of this study is to review technologies used to provide NICU CDSS. The literature review highlights the gaps within frameworks providing HAaaS paradigm for big data analytics METHODS Literature searches were performed in Google Scholar, IEEE Digital Library, JMIR Medical Informatics, JMIR Human Factors and JMIR mHealth and only English articles published on and after 2015 were included. The overall search strategy was to retrieve articles that included terms that were related to “health analytics” and “as a service” or “internet of things” / ”IoT” and “neonatal intensive care unit” / ”NICU”. Title and abstracts were reviewed to assess relevance. RESULTS In total, 17 full papers met all criteria and were selected for full review. Results showed that in most cases bedside medical devices like pulse oximeters have been used as the sensor device. Results revealed a great diversity in data acquisition techniques used however in most cases the same physiological data (heart rate, respiratory rate, blood pressure, blood oxygen saturation) was acquired. Results obtained have shown that in most cases data analytics involved data mining classification techniques, fuzzy logic-NICU decision support systems (DSS) etc where as big data analytics involving Artemis cloud data analysis have used CRISP-TDM and STDM temporal data mining technique to support clinical research studies. In most scenarios both real-time and retrospective analytics have been performed. Results reveal that most of the research study has been performed within small and medium sized urban hospitals so there is wide scope for research within rural and remote hospitals with NICU set ups. Results have shown creating a HAaaS approach where data acquisition and data analytics are not tightly coupled remains an open research area. Reviewed articles have described architecture and base technologies for neonatal health monitoring with an IoT approach. CONCLUSIONS The current work supports implementation of the expanded Artemis cloud as a commercial offering to healthcare facilities in Canada and worldwide to provide cloud computing services to critical care. However, no work till date has been completed for low resource setting environment within healthcare facilities in India which results in scope for research. It is observed that all the big data analytics frameworks which have been reviewed in this study have tight coupling of components within the framework, so there is a need for a framework with functional decoupling of components.


2022 ◽  
pp. 1477-1503
Author(s):  
Ali Al Mazari

HIV/AIDS big data analytics evolved as a potential initiative enabling the connection between three major scientific disciplines: (1) the HIV biology emergence and evolution; (2) the clinical and medical complex problems and practices associated with the infections and diseases; and (3) the computational methods for the mining of HIV/AIDS biological, medical, and clinical big data. This chapter provides a review on the computational and data mining perspectives on HIV/AIDS in big data era. The chapter focuses on the research opportunities in this domain, identifies the challenges facing the development of big data analytics in HIV/AIDS domain, and then highlights the future research directions of big data in the healthcare sector.


Sign in / Sign up

Export Citation Format

Share Document