scholarly journals Learning an Optimal Operational Strategy for Service Life Extension of Gear Wheels with Double Deep Q Networks

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tamer Tevetoglu ◽  
Mark Henss ◽  
Yvonne Gretzinger ◽  
Bernd Bertsche

One failure mechanism of gear wheels is pitting. If the gear wheel is case hardened, pitting degradation dominates normally at one tooth only. All the other teeth are still intact at the standardized end of life criterion of 4 % pitting area based on the total tooth area. Using an operational strategy that was developed at the Institute of Machine Components, the service life of gear wheels can be extended by a local stress reduction at the weakest tooth. This is accomplished by applying an adapted torque at the transmission input that shifts a minimum torque in the area of the pre-damaged, and thus, weakest tooth. Consequently, all remaining teeth with higher load bearing capacity are subjected to higher torque. Prerequisite for the described theoretical operational strategy is knowledge on pitting-size and -position. The detection of these properties in operation is not state of the art yet. In this work, only the gearbox vibration signal is known without explicit knowledge about the inside pitting. So the challenge is to determine the health for each individual tooth and to choose an optimal adapted torque based on this. This is especially difficult due to differing growth rates of pittings on one individual gear wheel. Hence, different pittings dominate over the service life, which results in the need of a continuous optimization of the torque control. Algorithms of Reinforcement Learning (RL) are particularly suitable for this challenge. In this branch of Machine Learning (ML), an agent interacts inside an environment and learns by getting rewards for taking actions at given states. In this study, the environment is a gearbox-simulation-model, the state is the current vibration signal, and the action is the chosen adapted torque. Thus, it is possible to let the algorithm learn the whole operational strategy, from online failure detection to an adapted torque at the transmission input. The results of this study show the theoretical feasibility of the operational strategy using Double Deep Q Networks as the RL Algorithm. The algorithm is able to learn a suitable reaction to pittings that increase linearly or progressively at an early stage and therefore delays their growth within the defined limits. Thus, the lifetime of the gearbox is extended while maintaining the same total power of the gearbox. As an outlook, the results will be examined for their sensitivity on several influencing factors in a further study. The wider view is to use this simulation on a test rig and validate the results.

2006 ◽  
Vol 324-325 ◽  
pp. 793-798
Author(s):  
Mateja Ploj Virtič ◽  
Boris Aberšek ◽  
Mirko Čudina ◽  
Aleš Belšak

This paper presents a control and diagnostics model of single stage gear wheels using acoustic responses. The model is based on various methods and procedures that provide information about the generator’s condition and, specifically, its service life. Four procedures are combined in this model: the mathematical module of the gear wheel that translates the complete mechanical module into mathematical form, the adaptive FIR (Finite Impulse Response) filter that calculates impulse responses from the non-linear system, the module for calculating any impulse response, and the FFT (Fast Fourier Transform) frequency analysis used for simulating frequency spectrums. The result of the simulation is the sound frequency spectrum that allows the analysis of gear wheel tooth damage and, based on this spectrum, calculation of the remaining service life and/or the maintenance process.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012034
Author(s):  
Hai Zeng ◽  
Ning Zeng ◽  
Jin Han ◽  
Yan Ding

Abstract Engine vibration signals include strong noise and non-stationary signals. By the time domain signal processing approach, it is hard to extract the failure features of engine vibration signals, so it is hard to identify engine failures. For improving the success rate of engine failure detection, an engine angle domain vibration signal model is established and an engine fault detection approach based on the signal model is proposed. The angle domain signal model reveals the modulation feature of the engine angular signal. The engine fault diagnosis approach based on the angle domain signal model involves equal angle sampling and envelope analysis of engine vibration signals. The engine bench test verifies the effectiveness of the engine fault diagnosis approach based on the angle domain signal model. In addition, this approach indicates a new path of engine fault diagnosis and detection.


1989 ◽  
Vol 5 (02) ◽  
pp. 79-89
Author(s):  
Koichi Baba ◽  
Takao Wada ◽  
Soichi Kondo ◽  
M. S. O'Hare ◽  
James C. Schaff

Philadelphia Naval Shipyard's application of zone logic to ship overhaul is neither small nor isolated. PNSY started its implementation of zone logic in the late fall of 1986, targeting the Service Life Extension Program (SLEP) for USS Kitty Hawk (CV-63) as the initial application. The technical services of Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI), Japan were contracted to assist in this transition. This implementation on the Kitty Hawk is not a trial effort but involves about one third of the production man-days and covers over one half of the compartments on the ship. The actual SLEP production work on Kitty Hawk began in January 1988. Even though it is early in the three-year SLEP, zone logic already is proving its worth. This paper explains the zone logic methods and methodology applied at PNSY on Kitty Hawk. It also discusses the future of zone logic at PNSY and its continued application.


Author(s):  
В.В. Куц ◽  
А.А. Панин ◽  
Д.Н. Тютюнов ◽  
К.В. Жилина

Предлагается краткий обзор промышленного производства червячных фрез. Показано, что повышение качества и производительности изготовления зубчатых колес является необходимым условием снижения себестоимости и расширения объемов производства зубчатых колес на отечественных предприятиях. Главным требованием, предъявляемым к зубьям данной фрезы, является то, чтобы в результате заточки по передней поверхности, которая лежит в осевой плоскости фрезы, профиль зубьев сохранялся до почти полного их износа. Поэтому особое внимание уделяется выбору кривой затылования с учётом целого ряда факторов, способствующих совершенствованию процесса обработки. Отмечено, что затылование имеет ряд преимуществ, в сравнении с острой заточкой фрез. Изложен новый подход к проектированию рабочей оснастки для обработки малых колес циклоидной передачи и исследованы теоретически допустимые интервалы изменения задних углов при затыловании. Установлено, что несмотря на преимущества циклоидальной фрезы перед другими типами затылованных фрез в скорости и точности обработки, она имеет один недостаток - довольно малый промежуток применимости на дуге циклоиды. На основе существующих подходов разработан вариант затылования зубьев червячной фрезы по циклоиде The article provides an overview of the industrial production of hob cutters. We show that improving the quality and productivity of gear wheel manufacturing is a necessary condition for reducing the cost and expanding the production of gear wheels at domestic enterprises. The main requirement for the teeth of this cutter is that, as a result of sharpening on the front surface, which lies in the axial plane of the cutter, the profile of the teeth remains sharp until they are almost completely worn out. Therefore, we paid special attention to the choice of the relief curve, taking into account a number of factors that contribute to the improvement of the processing process. We note that relief has a number of advantages in comparison with sharpening of cutters. We give a new approach to the design of working equipment for processing small cycloidal wheels and investigate the theoretically permissible intervals of variation of the rear angles during relief. We established that despite the advantages of a cycloidal cutter over other types of undercut cutters in terms of speed and machining accuracy, it has one drawback - a rather small range of applicability on the cycloid arc. On the basis of existing approaches, we developed a variant of the relief of the teeth of the worm cutter along the cycloid


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Aruz Petcherdchoo

This paper presents sensitivity of service life extension and CO2 emission due to silane (alkyltriethoxysilane) treatment on concrete structures under time-dependent chloride attack. The service life is predicted by the Crank–Nicolson-based finite difference approach for avoiding the complexity in solving Fick’s second law. The complexity occurs due to time-dependent chloride attack and nonconstant diffusion coefficient of concrete with silane treatment. At the application time of silane treatment, the cumulative CO2 emission is assessed. The effectiveness of silane treatment is defined as the ratio of the service life extension to the cumulative CO2 emission assessed within the corrosion-free service life. The service life extension is defined as the difference between corrosion-free service life of concrete structures without and with time-based application of silane treatment. From the study, the diffusion of chlorides in concrete with silane treatment is found to be retarded. In comparison, the strategy without deterioration of silanes during effective duration is more suitable for service life extension but less effective than that with deterioration. In the sensitivity analysis, there are up to eight parameters to be determined. The service life of concrete structures without silane treatment is most sensitive to the water-to-cement ratio and the threshold depth of concrete structures. Considering only five parameters in silane treatment strategies, the service life is most sensitive to the first application time of silane treatment. The cumulative CO2 emission is most sensitive to either the first application time of silane treatment or the amount of CO2 emission per application.


2017 ◽  
Vol 728 ◽  
pp. 384-389
Author(s):  
Aruz Petcherdchoo ◽  
Chotima Ongsopapong

This study presents assessment of the environmental impact in terms of the CO2 due to silane treatment for extending corrosion-free service life of concrete structures under chloride attack. To achieve this, there are two issues to be addressed; prediction of corrosion-free service life extension, and assessment of the amount of CO2 emission. In predicting the corrosion-free service life extension, the behaviors of chloride diffusion before and after time-based silane treatment are considered. Then, the cumulative CO2 due to silane treatment is accordingly calculated. The ratio of the corrosion-free service life extension to the cumulative CO2 is defined as the effectiveness of silane treatment, and used to compare different silane treatment strategies.


Author(s):  
Christiane L. Machado ◽  
Sudheer Chand

The Offshore Oil and Gas Industry has converted a large number of units from trading tankers and carriers into Floating Production, Storage and Offloading units (FPSOs). Several of these have been moored offshore Brazil during the last 15 years. Following the discovery of offshore pre-salt fields some years ago, demand for FPSOs has increased, and the forecasts for productive field lives have grown. The result of these developments is the need to extend the service lives of existing FPSOs. The main aim of this study is to investigate FPSO structural response to environmental conditions and functional loads, considering the actual available tools for numerical simulations and Rule requirements, which currently are basic requirements for design review for Classification. The procedure was developed from one selected FPSO converted from a trading Very Large Crude Carrier (VLCC) tanker approximately 15 years ago and includes investigation of the impact on hull behavior comparing the motion analyses of the production unit under environmental data and software capabilities available at the period of conversion and actual performance: variances in the environmental (sea scatter diagrams) datasets; updates to Classification requirements for defining offloading conditions, environmental loads, acceptance criteria and remaining fatigue life (RFL); and incorporating the most recent gauged thickness for primary structure. The selected FPSO was evaluated according to prescriptive Rule requirements and also using finite element analysis, taking into account the previous conditions of Classification approval as well as the actual requirements and available data. Structural analysis included one global model and some local refined models to address strength, buckling and fatigue capacity of the typical portions/connections of the hull. The comparisons performed from the results of these analyses are a crucial step toward understanding the structural capacity of the FPSO at the conversion stage, its performance during the last 15 years, and its remaining service life. Differences were tabulated and evaluated so that a more precise level of uncertainty could be achieved for predicting the estimated remaining service life, and consequently, a new and dedicated approach to investigate the existing FPSO fleet is being generated.


Sign in / Sign up

Export Citation Format

Share Document