CALCULATION AND ANALYSIS OF EFFECTIVE ATOMIC NUMBER USING AUTO ZEFFECTIVE METHOD FOR BORO-SILICATE GLASS SERIES GLASS [Li O – B O – SiO 2 2 3 2 – XO] WITH THIRD (5D) D-BLOCK (HF–HG) TRANSITION METALS ELEMENTS (X)

2021 ◽  
pp. 58-59
Author(s):  
Sangeet Markanda

The impact of the doping of the transition metals with Lithium Oxide provides signicant data in Boro-silicate materials. Hence their comprehensive study with Lithium in Boro-silicate glass studied in the present paper. Z-effective shows non consistence in study respective to energy and even more anomalous with respective to the atomic number at lowest energy levels (0.01 MeV). Variations in Z-effective are high with increase in energy among all 5d metals used in given series of glass. For 1 to 100 MeV a small variation observed in data as it ranges 9 to 21 (Zeffective). Even variation is symmetrical within the 5d transition metals except for Hf (72) and Ta (73)

2021 ◽  
Vol 19 (8) ◽  
pp. 66-69
Author(s):  
Amjed Mohammed Shreef ◽  
Nura Anwer Abdulzahara

In this research, the coefficient of linear absorption, Half-value layer and Effective atomic number of the composite material for gamma ray of gadolinium oxide with PMMA (Gd2O3- PMMA) for shields made with varying concentrations (10%, 20%, 30%, 40%) and varied thicknesses The impact of raising the shield thickness when the concentration of each thickness is increased. The gamma ray radiation source was Cs-137and Co-60 which have (activity 10 μci and energy of 0.662 MeV, activity 1μci and energies 1.173 -1.332 (MeV) were used in measurement, As an electrical system, a scinatelaion detector (NaI (Tl)) was utilized with a (2x2)" for ORTEC software program (Scintivision-Buffer) with an integrated measurement system. The results reveal that when the concentration of nano particle-gadolinium oxides raised and the thickness of the produced layer increased, the attenuation coefficient and effective atomic number values increased of the prepared composite However, as the concentration and thickness of the composite increased, the Half-value layer values dropped.


2020 ◽  
Vol 2020 (14) ◽  
pp. 294-1-294-8
Author(s):  
Sandamali Devadithya ◽  
David Castañón

Dual-energy imaging has emerged as a superior way to recognize materials in X-ray computed tomography. To estimate material properties such as effective atomic number and density, one often generates images in terms of basis functions. This requires decomposition of the dual-energy sinograms into basis sinograms, and subsequently reconstructing the basis images. However, the presence of metal can distort the reconstructed images. In this paper we investigate how photoelectric and Compton basis functions, and synthesized monochromatic basis (SMB) functions behave in the presence of metal and its effect on estimation of effective atomic number and density. Our results indicate that SMB functions, along with edge-preserving total variation regularization, show promise for improved material estimation in the presence of metal. The results are demonstrated using both simulated data as well as data collected from a dualenergy medical CT scanner.


2020 ◽  
Vol 2020 (14) ◽  
pp. 293-1-293-7
Author(s):  
Ankit Manerikar ◽  
Fangda Li ◽  
Avinash C. Kak

Dual Energy Computed Tomography (DECT) is expected to become a significant tool for voxel-based detection of hazardous materials in airport baggage screening. The traditional approach to DECT imaging involves collecting the projection data using two different X-ray spectra and then decomposing the data thus collected into line integrals of two independent characterizations of the material properties. Typically, one of these characterizations involves the effective atomic number (Zeff) of the materials. However, with the X-ray spectral energies typically used for DECT imaging, the current best-practice approaches for dualenergy decomposition yield Zeff values whose accuracy range is limited to only a subset of the periodic-table elements, more specifically to (Z < 30). Although this estimation can be improved by using a system-independent ρe — Ze (SIRZ) space, the SIRZ transformation does not efficiently model the polychromatic nature of the X-ray spectra typically used in physical CT scanners. In this paper, we present a new decomposition method, AdaSIRZ, that corrects this shortcoming by adapting the SIRZ decomposition to the entire spectrum of an X-ray source. The method reformulates the X-ray attenuation equations as direct functions of (ρe, Ze) and solves for the coefficients using bounded nonlinear least-squares optimization. Performance comparison of AdaSIRZ with other Zeff estimation methods on different sets of real DECT images shows that AdaSIRZ provides a higher output accuracy for Zeff image reconstructions for a wider range of object materials.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 658
Author(s):  
Erin L. Wood ◽  
David G. Christian ◽  
Mohammed Arafat ◽  
Laura K. McColl ◽  
Colin G. Prosser ◽  
...  

Adjustment of protein content in milk formulations modifies protein and energy levels, ensures amino acid intake and affects satiety. The shift from the natural whey:casein ratio of ~20:80 in animal milk is oftentimes done to reflect the 60:40 ratio of human milk. Studies show that 20:80 versus 60:40 whey:casein milks differently affect glucose metabolism and hormone release; these data parallel animal model findings. It is unknown whether the adjustment from the 20:80 to 60:40 ratio affects appetite and brain processes related to food intake. In this set of studies, we focused on the impact of the 20:80 vs. 60:40 whey:casein content in milk on food intake and feeding-related brain processes in the adult organism. By utilising laboratory mice, we found that the 20:80 whey:casein milk formulation was consumed less avidly and was less preferred than the 60:40 formulation in short-term choice and no-choice feeding paradigms. The relative PCR analyses in the hypothalamus and brain stem revealed that the 20:80 whey:casein milk intake upregulated genes involved in early termination of feeding and in an interplay between reward and satiety, such as melanocortin 3 receptor (MC3R), oxytocin (OXT), proopiomelanocortin (POMC) and glucagon-like peptide-1 receptor (GLP1R). The 20:80 versus 60:40 whey:casein formulation intake differently affected brain neuronal activation (assessed through c-Fos, an immediate-early gene product) in the nucleus of the solitary tract, area postrema, ventromedial hypothalamic nucleus and supraoptic nucleus. We conclude that the shift from the 20:80 to 60:40 whey:casein ratio in milk affects short-term feeding and relevant brain processes.


2021 ◽  
pp. 002199832199432
Author(s):  
Yacine Ouroua ◽  
Said Abdi ◽  
Imene Bachirbey

Multifunctional composite materials are highly sought-after by the aerospace and aeronautical industry but their performance depends on their ability to sustain various forms of damages, in particular damages due to repeated impacts. In this work we studied the mechanical behavior of a layered glass-epoxy composite with copper inserts subjected to fatigue under repeated impacts with different energy levels. Damage evolution as a function of impact energy was carefully monitored in order to determine the effect of the copper inserts on mechanical characteristics of the multifunctional composite, such as endurance and life. Results of repeated impact tests show that electric current interruption in the copper inserts occurs prior to the total perforation of the composite material, and after about 75% of the total number of impacts to failure. This is the case for the three energy levels considered in this study, [Formula: see text] = 2, 3 and 4 Joules. The epoxy resin was dissolved chemically in order to preserve the mechanical structure of the damaged copper inserts and the composite fibers for further inspection and analysis. Scanning electron microscopy (SEM) of the fractured copper inserts revealed interesting information on the nature of the damage, including information on plastic deformation, strain hardening, cracking mode, temperature increase during the impacts, and most importantly the glass fibers and their roles during the impact-fatigue tests.


2021 ◽  
pp. 159142
Author(s):  
Khushboo Punia ◽  
Ganesh Lal ◽  
Saurabh Dalela ◽  
Satya Narain Dolia ◽  
Parvez Ahmad Alvi ◽  
...  

2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


Sign in / Sign up

Export Citation Format

Share Document