scholarly journals Water Absorption, Sorptivity and Permeability Properties of Concrete Containing Chemical and Mineral Admixtures

Author(s):  
O.O. Akinkurolere

Concrete durability, especially in water-logged environments might not be possible with conventional constituents of concrete. A combination of mineral and chemical admixtures in different proportions is used to study water absorption, sorptivity, and permeability behavior of concrete. The water absorption, sorptivity, and permeability test were carried out using nine (9) trial mixes of different proportions of Calcined Clay (CC), Sawdust Ash (SDA), Crystalline Based Admixture (CBA), and Superplasticizer (SP). The results showed that treating concrete with 5% CC + 5% SDA+1% CBA combination gives optimum performance in terms of sorptivity with reduced water absorption value of 4.60%. While the permeability coefficient of concrete is reduced when CC and SDA are added to concrete mix separately, the reactivity between their combination (CC and SDA) significantly increased permeability coefficient of the concrete. The study demonstrates that production of concrete with the right proportions of admixture and pozzolanas improve the durability of concrete structures.

Mineral admixtures are being used today almost in all concretes partially, to improve workability, engineering properties and also to enhance durability of the concrete. These admixtures are industrial by-products. In the present study, mineral admixture such as metakaolin (MK) is replaced partially in cement to investigate permanence properties of concrete in terms of initial water absorption, final water absorption and confrontation to acid attack. Inorder to identify the durability properties, concrete of M30 grade was prepared. The mineral admixture content was varied from 0% to 30% by volume of cement with 10% gradient. In acid attack, 3% H2SO4 solution is used for curing of specimens and the corresponding weight losses (%) were evaluated for curing periods of 7 days, 14 days and 28 days. Both initial and final water absorptions of the metakaolin-modified concrete have been improved when metakaolin content was increased up to 10% advantageously. And, also weight loss was decreased when metakaolin content varied from 0% to 30%.


2018 ◽  
Vol 174 ◽  
pp. 02007
Author(s):  
Anna Kotwa

There is currently no known one recipe for a concrete mix that would be suitable in all operating conditions. At present, in addition to the basic ingredients, mineral additives and chemical admixtures can be found in the formulas of concrete mixes. Each intentionally introduced addition to the concrete mix affects the rheological characteristics of the concrete mix as well as the parameters of hardened concrete. The use of mineral additives replacing cement and aggregate in a concrete mix should contribute to environmental protection in a simple and economical way. If, in addition, additives are by-products of industry, they should be managed. Alternatively, one should look for possibilities of their neutralization, eg in the concrete industry. The article applies to laboratory tests of concretes with the addition of 0%, 10%, 20%, 30% metakaolin. The additive was replaced with cement in a concrete mix. The effect of the additive on compressive strength, water absorption and capillary rupture of concretes was investigated. Compressive strength was tested after 14, 28, 56 and 90 days. Water absorption and capillary rupture was tested after 28, 56 and 90 days.


Author(s):  
Temitope Funmilayo Awolusi ◽  
Adebayo Olatunbosun Sojobi ◽  
Daniel O. Oguntayo ◽  
Olufunke O. Akinkurolere ◽  
B.O. Orogbade

2014 ◽  
Vol 634 ◽  
pp. 517-526 ◽  
Author(s):  
Elsa Neto ◽  
Ana Souto ◽  
Aires Camões ◽  
Arlindo Begonha ◽  
Paulo Cachim

The heritage of fair-faced concrete, largely built in the twentieth century and nowadays recognized as heritage to be protected, is susceptible to attacks by graffiti, a form of vandalism that causes a major social and economic impact on society. Concrete is a porous material sometimes deteriorated over the years, and the interactions between the inks and the substrate and removal methods sometimes deteriorate or alter the concrete surface, especially if it is necessary to repeat the removal process. The anti-graffiti products are applied on the surface of the concrete, hindering the adhesion of paints or preventing its penetration into the pores of concrete, which in turn facilitates their removal. However, it appears that many of the existing protective products on the market may also alter the surface characteristics of the concrete irreversibly. Considering that the durability of concrete depends on the composition and characteristics of the surface, it is essential to know the effects of anti-graffiti protection systems on the durability of concrete and adopt the appropriate methodology to preserve this heritage. Thus, an experimental program was developed for analyzing changes in durability indicators and surface properties that protect concrete from deterioration (i) concrete without protection before and after application of spray paint, (ii) concrete with protection before and after application of spray paint and (iii) after paint removal were studied. Two anti-graffiti products were evaluated: a permanent and a sacrificial one. Effects of the anti-graffiti systems on the concrete durability are investigated and the tests performed include: water absorption by capillary and immersion at atmospheric pressure. The results of the water absorption tests show that the graffiti protection reduces the water absorption into the concrete and facilitates the removal of the graffiti without affecting negatively the characteristics of the surface and thus contributing to improve its durability.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
R. Dharmaraj ◽  
G. K. Arunvivek ◽  
Alagar Karthick ◽  
V. Mohanavel ◽  
Bhagavathi Perumal ◽  
...  

Water is a crucial element in the concrete mix and is alone responsible for concrete work ability and cement hydration. The massive quantity of potable water consumed during the production of concrete is a concern. In general, fresh and hard concrete qualities are most influenced by the quantity and water quality. The use of magnetic water in concrete gives many benefits when it comes to increasing its properties. A substantial quantity of water can be saved by substituting potable water with magnetized water in concrete. In this study, the effects of magnetized water on the concrete's mechanical and durability properties were tested. Four different combinations were made using potable water and magnetic water. Mechanical properties including compression, flexural, tensile strength, and SEM analysis were evaluated. Water absorption, acid resistance, and corrosion resistance were all tested as part of the durability tests. According to the results of the experiments, employing magnetic water for concrete preparation and curing enhanced the mechanical properties and durability. Concrete mix MMMC prepared and subjected to curing using magnetized water has a 14.86% greater compressive strength than ordinary concrete. Similarly, tensile and flexural strength of mix MMMC amplified to 14.32% and 14.02%, respectively. Besides, the consumption of chemical admixtures also considerably reduced in magnetized water imbibed concrete.


2016 ◽  
Vol 7 (5) ◽  
pp. 546-550
Author(s):  
Aurelijus Daugėla ◽  
Džigita Nagrockienė ◽  
Laurynas Zarauskas

Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.


1974 ◽  
Vol 60 (2) ◽  
pp. 557-566
Author(s):  
K. KRISTENSEN ◽  
E. SKADHAUGE

1. In euryhaline teleosts the transmural salt and water flow and the flow and concentration changes along the gut were simulated by analogue computation. The purpose was to elucidate the interaction of and sensitivity to the parameters of the system particularly with respect to intestinal water absorption. The simulations were based on data obtained from the yellow European eel, the rainbow trout and the cyprinodont Aphanius dispar. 2. When the experimental values for drinking rate, maximal NaCl absorption rate and concentration at half-maximal absorption rate, osmotic permeability coefficient, solute-linked water flow, and concentrations in the gut were used in the model, good consistency was achieved, and predictions could be made. 3. The simulations demonstrated a close linkage between drinking rate and maximal NaCl absorption rate. A large water absorption was only possible close to an optimal drinking rate for each value of maximal NaCl transport rate. The water absorption was little sensitive to the osmotic permeability coefficient of the intestinal wall. 4. As a means of adaptation to waters of high salinity an increase in maximal NaCl absorption rate was shown to be very costly for energetic reasons. This supports indirectly the concept that the osmotic permeability of the gills must go down. The increase in plasma osmolality was a useful part of the adaptation.


Author(s):  
Grigory Yakovlev ◽  
Jadvyga Keriene ◽  
Anastasiia Gordina ◽  
Irina Polyanskikh ◽  
Milan Bekmansurov

The paper presents possible ways of utilizing technogenic waste – fluorine anhydrite – by its use in production of dry mortars and piece goods from lightweight concrete with expanded polystyrene, as a organic filler, for low-rise construc-tion. The developed dry mortars are based on fluorine anhydrite binder and complex modifier comprising curing activator (sulfate or alkaline) and finely dispersed additive. The fluorine anhydrite-based compositions have improved physical and performance characteristics, including the improved strength and average density and reduced water absorption compared to the control composition. The developed lightweight anhydrite polystyrene concrete has the density grade of 700 kg/m3 and good vapor and gas permeability. The concrete is stabile while using and fire safe, because each granule of expanded poly-styrene is coated with anhydrite matrix, and has the strength sufficient for structural and heat insulating slabs and blocks. All mentioned compositions are eco-friendly and are in great demand for low-rise construction. Therefore the manufacturing of these compositions will consume a large amount of technogenic waste and will reduce the environmental load on the region where the waste is located.


Sign in / Sign up

Export Citation Format

Share Document