scholarly journals Correlation between Electrical Resistivity and Cone Penetrometer Test Data for Geotechnical Site Investigation

Author(s):  
I. A. Akinlabi

The use of the electrical resistivity method provides cost-effective subsurface information faster and allows reliable interpolation to be made between the tested points. It is therefore desirable to generate consistent data from resistivity measurements by using empirical relationships while only few zones of interest will require testing. This study, therefore, developed empirical relationships between electrical resistivity sounding and cone penetrometer test data for engineering site investigation using a case study from the Basement Complex Terrain of Southwestern Nigeria. Regression analysis was used to assess the correlation between the soil resistivity and cone resistance and the validity of the empirical relation was evaluated by comparing values estimated from the soil resistivity vs. cone resistance cross plot with field values obtained from cone penetration tests. The values of allowable bearing pressure computed by using both values in Meyerhof’s equation were also compared with the allowable bearing capacity deduced with laboratory values of soil strength parameters (cohesion, angle of internal friction, soil unit weight) in Terzaghi’s general formula. The results show close agreement between the measured and estimated values with the differences typically less than 10%. The standard errors of the estimates for the cone resistance and allowable bearing capacity are 2.70 and 4.16 respectively, implying reliability of the estimates. The proposed empirical relationships, therefore, appear to provide reasonable estimation of soil cone resistance and allowable bearing capacity from soil resistivity. Few complimentary cone penetrometer and laboratory tests will thus be required while the cost and duration of site investigation for engineering structures are expected to reduce.

2020 ◽  
Vol 67 (1) ◽  
pp. 21-33
Author(s):  
O. Falowo Olumuyiwa

AbstractThe study integrates geophysical and geotechnical methods for subsoil evaluation and shallow foundation design. The study involved six vertical electrical sounding and geotechnical investigation involving cone penetration test and laboratory soil analysis. Three major geologic units were delineated; the topsoil, weathered layer and partly weathered/fractured/fresh bedrock. The overburden thickness is in between 15.2–32.9 m. Based on resistivity (16–890 ohm-m) and thickness (12.7–32 m) the weathered layer is competent to distribute structural load to underlying soil/rock. The groundwater level varies from 4.5 to 12.3 m. Therefore an average allowable bearing capacity of 200 kPa is recommended and would be appropriate for design of shallow foundation in the area, at a depth not less than 1.0 m with an expected settlement ranging from 9.03–48.20 mm. The ultimate bearing and allowable bearing capacity for depth levels of 1–3 m vary from 1403–2666 kPa and 468–889 kPa for strip footing while square footing varies in between 1956–3489 kPa and 652–1163 kPa respectively.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Ja'afar A Sadeeq ◽  
Anigilaje B Salahudeen

This study was carried out to investigate and determine the geotechnical parameters required for adequate design and positioning of structures and facilities of the proposed Minna City Centre, at Minna the capital of Niger state. The soil samples used for the study were obtained from 10 SPT boreholes at 0.6, 2.1 and 3.6 m depths and all laboratory tests were conducted in accordance with BS 1377. Results show that soil particle sizes increases with boring depth up to the basement complex and values of cohesion and angle of internal friction show that the shearing resistance and bearing capacity of soils will be relatively high and favourable for the intended structures. Average allowable bearing capacity values in the range of 100 – 300 kN/m2 are recommended for use in the study area with embedment depth between 1 – 3 m.


2019 ◽  
Vol 114 ◽  
pp. 103138 ◽  
Author(s):  
Changguang Zhang ◽  
Benxian Gao ◽  
Qing Yan ◽  
Junhai Zhao ◽  
Lizhou Wu

2019 ◽  
Vol 56 (7) ◽  
pp. 992-1002 ◽  
Author(s):  
Yu Wang ◽  
Zheng Guan ◽  
Tengyuan Zhao

Site investigation is a fundamental element in geotechnical engineering practice, but only a small portion of geomaterials is sampled and tested during site investigation. This leads to a question of sample size determination: how many samples are needed to achieve a target level of accuracy for the results inferred from the samples? Sample size determination is a well-known topic in statistics and has many applications in a wide variety of areas. However, conventional statistical methods, which mainly deal with independent data, only have limited applications in geotechnical site investigation because geotechnical data are not independent, but spatially varying and correlated. Existing design codes around the world (e.g., Eurocode 7) only provide conceptual principles on sample size determination. No scientific or quantitative method is available for sample size determination in site investigation considering spatial variation and correlation of geotechnical properties. This study performs an extensive parametric study and develops a statistical chart for sample size determination with consideration of spatial variation and correlation using Bayesian compressive sensing or sampling. Real cone penetration test data and real laboratory test data are used to illustrate application of the proposed statistical chart, and the method is shown to perform well.


2020 ◽  
Vol 10 (21) ◽  
pp. 7625
Author(s):  
Muhammad Usman Arshid ◽  
M. A. Kamal

A regional geotechnical map was developed by employing kriging using spatial and s geostatistical analysis tools. Many studies have been carried out in the field of topography, digital elevation modeling, agriculture, geological, crop, and precipitation mapping. However, no significant contribution to the development of geotechnical mapping has been made. For the appraisal of a geotechnical map, extensive field explorations were carried out throughout the geotechnically diversified plateau spread over an area of approximately 23,000 km2. In total, 450 soil samples were collected from 75 data stations to determine requisite index properties and soil classification for the subsequent allowable bearing capacity evaluation. The formatted test results, along with associated geospatial information, were uploaded to ArcMap, which created an initial input electronic database. The kriging technique of geostatistical analysis was determined to be more feasible for generating a geotechnical map. The developed map represents the distribution of soil in the region as per the engineering classification system, allowable bearing capacity, and American Association of State Highway and Transportation Officials (AASHTO) subgrade rating for 1.5-, 3.0-, and 4.5-m depths. The accuracy of the maps generated using kriging interpolation technique under spatial analyst tools was verified by comparing the values in the generated surface with the actual values measured at randomly selected validation points. The database was primarily created for the appraisal of geotechnical maps and can also be used for preliminary geotechnical investigations, which saves the cost of soil investigations. In addition, this approach allows establishing useful correlations among the geotechnical properties of soil.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5782
Author(s):  
Jong-Sub Lee ◽  
Yong-Hoon Byun

Subsurface characterization is essential for a successful infrastructure design and construction. This paper demonstrates the use of an instrumented cone penetrometer (ICP) for a dense layer characterization at two sites. The ICP consists of a cone tip and rods equipped with an accelerometer and four strain gauges, which allow dynamic driving, in addition to quasi-static pushing of the cone. The force and velocity of the cone are measured using the ICP instrumentation and compared with the N value, dynamic cone penetration index, and static cone resistance. A strong correlation has been observed between the total cone resistance estimated from the ICP and the dynamic cone penetration index and static cone resistance. After the correction of the dynamic cone resistance effect, the static component of the total cone resistance can be used as an alternative to a static cone resistance. This novel approach of soil resistance estimation using the ICP may be useful for dense layer characterization.


2019 ◽  
Vol 12 (15) ◽  
Author(s):  
Maher Omar ◽  
Abdallah Shanableh ◽  
Khaled Hamad ◽  
Ali Tahmaz ◽  
Mohamed G. Arab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document