STUDI SPILLOVER EFEK EXCHANGE-TRADED FUNDS (ETFs) DI ASEAN

2019 ◽  
Vol 4 (2) ◽  
pp. 245-256
Author(s):  
Ahmad Juliana ◽  
Apriliani Mutoharo

The volatility of financial security make an investor difficult and inaccurate to predict the value of targeted investation. The failure for predicting the value of financial asset will mitigate for either succeed or not an investation. That condition will not happen if an investor has knowledge for predicting the volatility financial asset. There for, we need study for forecasting the spillover effect of financial asset using ARCH-GARCH model. The novelty of this study is, we compare the three of ASEAN ETFs that still rarely investigate, are:  Indonesia, Malaysia and Singapore using 5 samples of ETFs. We applied Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) for predicting the spillover efect. The result of unit root test shown that the data not stationer at level, however stationer at first difference. The result of GARCH for JK-LQ45, EWS and EIDO are not significant and it mean there is not ARCH effect. In contract the result are significant for ETF EWM and FXSG. We also found the best AIC are from ETF EWS and ETF FXSG.


2020 ◽  
Vol 8 (4) ◽  
pp. 409-423
Author(s):  
Sümeyra GAZEL

In this study, weak form efficiency of the Exchange Traded Funds (ETF) in the Morgan Stanley Capital International (MSCI) Index of developed and developing countries is tested. The Fourier Unit Root test, which does not lose its predictive power in terms of structural break date, number and form, is used on daily data. Also, conventional unit root tests are used for comparison between two different tests. Analysis results indicate common findings in some countries for both unit root testing. However, the Fourier unit root test results relatively more support the assumption of efficient market hypothesis that developed countries may be more efficient than developing countries.



2005 ◽  
Vol 12 (1) ◽  
pp. 55-66 ◽  
Author(s):  
W. Wang ◽  
P. H. A. J. M Van Gelder ◽  
J. K. Vrijling ◽  
J. Ma

Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity) effect), a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community.



2014 ◽  
Vol 4 (2) ◽  
Author(s):  
Dr. Vandana Dangi

The impulsiveness in investment’s price is volatility and its meticulous estimation and forecasting is valuable to investors in the risk management of their portfolio. Earlier volatility of an asset was assumed to be constant. However, the pioneering studies of Mandelbrot, Engle and Bollerslev on the property of stock market returns did not support this assumption. The family of autoregressive conditional heteroskedasticity models were developed to capture time-varying characteristics of volatility. The present treatise attempts to study the presence of autoregressive conditional heteroskedasticity in four Indian banking sector indices viz. BSE Bankex, BSE PSU, CNX bank and CNX PSU. The daily banking sector indices for the period of January 2004 to December 2013 were taken from the online database maintained by the Bombay Stock Exchange and the National Stock Exchange. The data of four indices was studied for stationarity, serial correlation in the returns and serial correlation in the squares of returns with the help of Augmented Dickey–Fuller test, Box-Jenkins methodology and autoregressive conditional heteroscedasticity models respectively. The results of ACF, PACF and Ljung–Box Q test indicates that there is a tendency of the periods of high and low volatility to cluster in the Indian banking sector. All the four banking sector indices display the presence of ARCH effect indicating the presence of volatility clustering. Engle's ARCH test (i.e Lagrange multiplier test) and Breush-Godfrey-Pagan test and ARCH model confirmed the high persistence and predictability of volatility in the Indian banking sector.



2021 ◽  
Vol 3 (3) ◽  
pp. 164-170
Author(s):  
Fransisca Trisnani Ardikha Putri ◽  
Etik Zukhronah ◽  
Hasih Pratiwi

Abstract– PT Jasa Marga is a great reputation company, the leader in comparable businesses, has a steady income, and paying dividends consistently. This paper aims to find the best model to forecast stock price of PT Jasa Marga using ARIMA-GARCH. The data used is daily stock price of PT Jasa Marga from March 2020 to March 2021. Autoregressive Integrated Moving Average (ARIMA) is a method that can be used to forecast stock prices. However, an economical data tend to have heteroscedasticity problems, one of the methods used to overcome them is Generalized Autoregressive Conditional Heteroskedasticity (GARCH). Future stock price of PT Jasa Marga is forecasted with ARIMA-GARCH model.  The data is modeled with ARIMA first, if there is heteroscedasticity, combine the model with GARCH model. The result of this study indicated that ARIMA (1, 1, 1) – GARCH (2, 2) is the best model, with MAPE 1,5647 Abstrak– PT Jasa Marga adalah perusahaan yang reputasinya baik, terdepan di perusahaan-perusahaan sejenis, stabil pendapatannya, dan pembayaran devidennya konsisten. Paper ini bertujuan untuk mencari model terbaik dalam meramalkan harga saham PT Jasa Marga menggunakan ARIMA-GARCH. Data harga saham yang diolah yaitu data sekunder dari PT Jasa Marga pada Maret 2020 hingga Maret 2021. Autoregressive Integrated Moving Average (ARIMA) sebagai metode yang dapat dimanfaatkan guna meramalkan harga saham. Akan tetapi, data tentang ekonomi cenderung memiliki masalah heteroskedastisitas, metode yang umum dipakai untuk mengatasinya adalah Generalized Autoregressive Conditional Heteroskedasticity (GARCH). Harga saham PT Jasa Marga diramalkan dengan model ARIMA-GARCH.  Data terlebih dahulu dimodelkan dengan ARIMA, jika didapati adanya heteroskedastisitas, maka model tersebut dikombinasikan dengan GARCH. Penelitian ini menghasilkan ARIMA (1,1,1)-GARCH(2,2) sebagai model terbaik dengan MAPE 1,5647.



2019 ◽  
Vol 8 (1) ◽  
pp. 184-193
Author(s):  
Nurul Fitria Fitria Rizani ◽  
Mustafid Mustafid ◽  
Suparti Suparti

One of the methods that can be used to measure stock investment risk is Expected Shortfall (ES). ES is an expectation of risk size which value is greater than Value at Risk (VaR), ES has characteristics of sub-additive and convex. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to model stock data that has high volatility. Calculating ES is done with data that shows deviations from normality using Cornish-Fisher's expansion. This researchapplies the ES at the closing stock price of PT Astra International Tbk. (ASII), PT Bank Negara Indonesia (Persero) Tbk. (BBNI), and PT Indocement Tunggal Prakarsa Tbk. (INTP) for the period of 11 February 2013 - 31 March 2019. Based on the volatility of GARCH (1,1) analysis, we find ES calculation for each stock by 95% level  confidence. The ES for ASII shares is 4.1%, greater than the VaR value which isonly 2.64%.The ES for BBNI shares is 4.38%, greater than it’s VaR value which is only 2,86%. The ES for INTP shares is 6.22%, which is also greater than it’s VaR value which is only3,99%. The greather of VaR then Thegreather of ES obtained.Keywords: Expected Shortfall, Value at Risk, GARCH



2009 ◽  
Vol 05 (01) ◽  
pp. 0950005 ◽  
Author(s):  
JINGLIANG XIAO ◽  
ROBERT D BROOKS ◽  
WING-KEUNG WONG

This paper explores the relationship between volume and volatility in the Australian Stock Market in the context of a generalized autoregressive conditional heteroskedasticity (GARCH) model. In contrast to other studies who only examine the interaction of GARCH and volume effects on a small number of stocks, we examine these effects on the entire available data for the Australian All Ordinaries Index. We also emphasize on the impact of firm size and trading volume. Our results indicate that GARCH model testing and estimation is impacted by firm size and trading volume. Specifically, our analysis produces the following major findings. First, generally, daily trading volume, used as a proxy for information arrival time, is shown to have significant explanatory power regarding the variance of daily returns. Second, the actively traded stocks which may have a larger number of information arrivals per day have a larger impact of volume on the variance of daily returns. Third, we find that low trading volume and small firm lead to a higher persistence of GARCH effects in the estimated models. Fourth, unlike the elimination effect for the top most active stocks, in general, the elimination of both autoregressive conditional heteroskedasticity (ARCH) and GARCH effects by introducing the volume variable on all other stocks on average is not as much as that for the top most active stocks. Fifth, the elimination of both ARCH and GARCH effects by introducing the volume variable is higher for stocks in the largest volume and/or the largest market capitalization quartile group. Our findings imply that the earlier findings in the literature were not a statistical fluke and that, unlike most anomalies, the volume effect on volatility is not likely to be eliminated after its discovery. In addition, our findings reject the pure random walk hypothesis for stock returns.



Author(s):  
Monika Krawiec ◽  
Anna Górska

Within the last three decades commodity markets, including soft commodities markets, have become more and more like financial markets. As a result, prices of commodities may exhibit similar patterns or anomalies as those observed in the behaviour of different financial assets. Their existence may cast doubts on the competitiveness and efficiency of commodity markets. It motivates us to conduct the research presented in this paper, aimed at examining the Halloween effect in the markets of basic soft commodities (cocoa, coffee, cotton, frozen concentrated orange juice, rubber and sugar) from 1999 to 2020. This long-time span ensures the credibility of results. Apart from performing the two-sample t-test and the rank-sum Wilcoxon test, we additionally investigate the autoregressive conditional heteroskedasticity (ARCH) effect. Its presence in our data allows us to estimate generalised autoregressive conditional heteroskedasticity [GARCH (1, 1)] models with dummies representing the Halloween effect. We also investigate the impact of the January effect on the Halloween effect. Results reveal the significant Halloween effect for cotton (driven by the January effect) and the significant reverse Halloween effect for sugar. It brings implications useful to the main actors in the market. They may apply trading strategies generating satisfactory profits or providing hedging against unfavourable changes in soft commodities prices.



Sign in / Sign up

Export Citation Format

Share Document