scholarly journals Quantum learning with noise and decoherence: a robust quantum neural network

Author(s):  
Elizabeth Behrman ◽  
Nam Nguyen ◽  
James Steck

<p>Noise and decoherence are two major obstacles to the implementation of large-scale quantum computing. Because of the no-cloning theorem, which says we cannot make an exact copy of an arbitrary quantum state, simple redundancy will not work in a quantum context, and unwanted interactions with the environment can destroy coherence and thus the quantum nature of the computation. Because of the parallel and distributed nature of classical neural networks, they have long been successfully used to deal with incomplete or damaged data. In this work, we show that our model of a quantum neural network (QNN) is similarly robust to noise, and that, in addition, it is robust to decoherence. Moreover, robustness to noise and decoherence is not only maintained but improved as the size of the system is increased. Noise and decoherence may even be of advantage in training, as it helps correct for overfitting. We demonstrate the robustness using entanglement as a means for pattern storage in a qubit array. Our results provide evidence that machine learning approaches can obviate otherwise recalcitrant problems in quantum computing. </p> <p> </p>

2019 ◽  
Author(s):  
Elizabeth Behrman ◽  
Nam Nguyen ◽  
James Steck

<p>Noise and decoherence are two major obstacles to the implementation of large-scale quantum computing. Because of the no-cloning theorem, which says we cannot make an exact copy of an arbitrary quantum state, simple redundancy will not work in a quantum context, and unwanted interactions with the environment can destroy coherence and thus the quantum nature of the computation. Because of the parallel and distributed nature of classical neural networks, they have long been successfully used to deal with incomplete or damaged data. In this work, we show that our model of a quantum neural network (QNN) is similarly robust to noise, and that, in addition, it is robust to decoherence. Moreover, robustness to noise and decoherence is not only maintained but improved as the size of the system is increased. Noise and decoherence may even be of advantage in training, as it helps correct for overfitting. We demonstrate the robustness using entanglement as a means for pattern storage in a qubit array. Our results provide evidence that machine learning approaches can obviate otherwise recalcitrant problems in quantum computing. </p> <p> </p>


2021 ◽  
Vol 309 ◽  
pp. 01117
Author(s):  
A. Sai Hanuman ◽  
G. Prasanna Kumar

Studies on lane detection Lane identification methods, integration, and evaluation strategies square measure all examined. The system integration approaches for building a lot of strong detection systems are then evaluated and analyzed, taking into account the inherent limits of camera-based lane detecting systems. Present deep learning approaches to lane detection are inherently CNN's semantic segmentation network the results of the segmentation of the roadways and the segmentation of the lane markers are fused using a fusion method. By manipulating a huge number of frames from a continuous driving environment, we examine lane detection, and we propose a hybrid deep architecture that combines the convolution neural network (CNN) and the continuous neural network (CNN) (RNN). Because of the extensive information background and the high cost of camera equipment, a substantial number of existing results concentrate on vision-based lane recognition systems. Extensive tests on two large-scale datasets show that the planned technique outperforms rivals' lane detection strategies, particularly in challenging settings. A CNN block in particular isolates information from each frame before sending the CNN choices of several continuous frames with time-series qualities to the RNN block for feature learning and lane prediction.


2021 ◽  
Vol 13 (2) ◽  
pp. 275
Author(s):  
Michael Meadows ◽  
Matthew Wilson

Given the high financial and institutional cost of collecting and processing accurate topography data, many large-scale flood hazard assessments continue to rely instead on freely-available global Digital Elevation Models, despite the significant vertical biases known to affect them. To predict (and thereby reduce) these biases, we apply a fully-convolutional neural network (FCN), a form of artificial neural network originally developed for image segmentation which is capable of learning from multi-variate spatial patterns at different scales. We assess its potential by training such a model on a wide variety of remote-sensed input data (primarily multi-spectral imagery), using high-resolution, LiDAR-derived Digital Terrain Models published by the New Zealand government as the reference topography data. In parallel, two more widely used machine learning models are also trained, in order to provide benchmarks against which the novel FCN may be assessed. We find that the FCN outperforms the other models (reducing root mean square error in the testing dataset by 71%), likely due to its ability to learn from spatial patterns at multiple scales, rather than only a pixel-by-pixel basis. Significantly for flood hazard modelling applications, corrections were found to be especially effective along rivers and their floodplains. However, our results also suggest that models are likely to be biased towards the land cover and relief conditions most prevalent in their training data, with further work required to assess the importance of limiting training data inputs to those most representative of the intended application area(s).


2018 ◽  
Vol 3 (01) ◽  
Author(s):  
Kishori Radhey ◽  
Manu Pratap Singh

Most proposals for quantum neural networks have skipped over the implementation of the Qubit, superposition, entanglement and measurement in order to be used in MATLAB environment. Quantum computing uses unitary operators acting on discrete state vectors. Matlab is a well-known (classical) matrix computing environment, which makes it well suited for simulating quantum algorithms. The Quantum Computing Function (QCF) library extends Matlab by adding functions to represent and visualize common quantum operations. On the other hand a new mathematical model of computation called Quantum Neural Networks (QNNs) is defined, building on Deutsch's model of quantum computational network. The Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. In this paper the use and importance of those functions is illustrated with the help of few examples. This paper presents a brief overview of QCF that how it can be useful in Quantum Neural Network simulation.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 292 ◽  
Author(s):  
Md Zahangir Alom ◽  
Tarek M. Taha ◽  
Chris Yakopcic ◽  
Stefan Westberg ◽  
Paheding Sidike ◽  
...  

In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others. This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began. Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.


Author(s):  
Samuel A. Stein

Tremendous progress has been witnessed in artificial intelligence within the domain of neural network backed deep learning systems and its applications. As we approach the post Moore&rsquo;s Law era, the limit of semiconductor fabrication technology along with a rapid increase in data generation rates have lead to an impending growing challenge of tackling newer and more modern machine learning problems. In parallel, quantum computing has exhibited rapid development in recent years. Due to the potential of a quantum speedup, quantum based learning applications have become an area of significant interest, in hopes that we can leverage quantum systems to solve classical problems. In this work, we propose a quantum deep learning architecture; we demonstrate our quantum neural network architecture on tasks ranging from binary and multi-class classification to generative modelling. Powered by a modified quantum differentiation function along with a hybrid quantum-classic design, our architecture encodes the data with a reduced number of qubits and generates a quantum circuit, loading it onto a quantum platform where the model learns the optimal states iteratively. We conduct intensive experiments on both the local computing environment and IBM-Q quantum platform. The evaluation results demonstrate that our architecture is able to outperform Tensorflow-Quantum by up to 12.51% and 11.71% for a comparable classic deep neural network on the task of classification trained with the same network settings. Furthermore, our GAN architecture runs the discriminator and the generator purely on quantum hardware and utilizes the swap test on qubits to calculate the values of loss functions. In comparing our quantum GAN, we note our architecture is able to achieve similar performance with 98.5% reduction on the parameter set when compared to classical GANs. With the same number of parameters, additionally, QuGAN outperforms other quantum based GANs in the literature for up to 125.0% in terms of similarity between generated distributions and original data sets.


Author(s):  
Diwakar Naidu ◽  
Babita Majhi ◽  
Surendra Kumar Chandniha

This study focuses on modelling the changes in rainfall patterns in different agro-climatic zones due to climate change through statistical downscaling of large-scale climate variables using machine learning approaches. Potential of three machine learning algorithms, multilayer artificial neural network (MLANN), radial basis function neural network (RBFNN), and least square support vector machine (LS-SVM) have been investigated. The large-scale climate variable are obtained from National Centre for Environmental Prediction (NCEP) reanalysis product and used as predictors for model development. Proposed machine learning models are applied to generate projected time series of rainfall for the period 2021-2050 using the Hadley Centre coupled model (HadCM3) B2 emission scenario data as predictors. An increasing trend in anticipated rainfall is observed during 2021-2050 in all the ACZs of Chhattisgarh State. Among the machine learning models, RBFNN found as more feasible technique for modeling of monthly rainfall in this region.


2021 ◽  
Author(s):  
Alexander Zizka ◽  
Tobias Andermann ◽  
Daniele Silvestro

Aim: The global Red List (RL) from the International Union for the Conservation of Nature is the most comprehensive global quantification of extinction risk, and widely used in applied conservation as well as in biogeographic and ecological research. Yet, due to the time-consuming assessment process, the RL is biased taxonomically and geographically, which limits its application on large scales, in particular for understudied areas such as the tropics, or understudied taxa, such as most plants and invertebrates. Here we present IUCNN, an R-package implementing deep learning models to predict species RL status from publicly available geographic occurrence records (and other traits if available). Innovation: We implement a user-friendly workflow to train and validate neural network models, and subsequently use them to predict species RL status. IUCNN contains functions to address specific issues related to the RL framework, including a regression-based approach to account for the ordinal nature of RL categories and class imbalance in the training data, a Bayesian approach for improved uncertainty quantification, and a target accuracy threshold approach that limits predictions to only those species whose RL status can be predicted with high confidence. Most analyses can be run with few lines of code, without prior knowledge of neural network models. We demonstrate the use of IUCNN on an empirical dataset of ~14,000 orchid species, for which IUCNN models can predict extinction risk within minutes, while outperforming comparable methods. Main conclusions: IUCNN harnesses innovative methodology to estimate the RL status of large numbers of species. By providing estimates of the number and identity of threatened species in custom geographic or taxonomic datasets, IUCNN enables large-scale analyses on the extinction risk of species so far not well represented on the official RL.


Sign in / Sign up

Export Citation Format

Share Document