scholarly journals Search-Based Planning and Reinforcement Learning for Autonomous Systems and Robotics

Author(s):  
Than Le

<p>In this chapter, we address the competent Autonomous Vehicles should have the ability to analyze the structure and unstructured environments and then to localize itself relative to surrounding things, where GPS, RFID or other similar means cannot give enough information about the location. Reliable SLAM is the most basic prerequisite for any further artificial intelligent tasks of an autonomous mobile robots. The goal of this paper is to simulate a SLAM process on the advanced software development. The model represents the system itself, whereas the simulation represents the operation of the system over time. And the software architecture will help us to focus our work to realize our wish with least trivial work. It is an open-source meta-operating system, which provides us tremendous tools for robotics related problems.</p> <p>Specifically, we address the advanced vehicles should have the ability to analyze the structured and unstructured environment based on solving the search-based planning and then we move to discuss interested in reinforcement learning-based model to optimal trajectory in order to apply to autonomous systems.</p>

2020 ◽  
Author(s):  
Than Le

<p>In this chapter, we address the competent Autonomous Vehicles should have the ability to analyze the structure and unstructured environments and then to localize itself relative to surrounding things, where GPS, RFID or other similar means cannot give enough information about the location. Reliable SLAM is the most basic prerequisite for any further artificial intelligent tasks of an autonomous mobile robots. The goal of this paper is to simulate a SLAM process on the advanced software development. The model represents the system itself, whereas the simulation represents the operation of the system over time. And the software architecture will help us to focus our work to realize our wish with least trivial work. It is an open-source meta-operating system, which provides us tremendous tools for robotics related problems.</p> <p>Specifically, we address the advanced vehicles should have the ability to analyze the structured and unstructured environment based on solving the search-based planning and then we move to discuss interested in reinforcement learning-based model to optimal trajectory in order to apply to autonomous systems.</p>


Author(s):  
Xing Xu ◽  
Minglei Li ◽  
Feng Wang ◽  
Ju Xie ◽  
Xiaohan Wu ◽  
...  

A human-like trajectory could give a safe and comfortable feeling for the occupants in an autonomous vehicle especially in corners. The research of this paper focuses on planning a human-like trajectory along a section road on a test track using optimal control method that could reflect natural driving behaviour considering the sense of natural and comfortable for the passengers, which could improve the acceptability of driverless vehicles in the future. A mass point vehicle dynamic model is modelled in the curvilinear coordinate system, then an optimal trajectory is generated by using an optimal control method. The optimal control problem is formulated and then solved by using the Matlab tool GPOPS-II. Trials are carried out on a test track, and the tested data are collected and processed, then the trajectory data in different corners are obtained. Different TLCs calculations are derived and applied to different track sections. After that, the human driver’s trajectories and the optimal line are compared to see the correlation using TLC methods. The results show that the optimal trajectory shows a similar trend with human’s trajectories to some extent when driving through a corner although it is not so perfectly aligned with the tested trajectories, which could conform with people’s driving intuition and improve the occupants’ comfort when driving in a corner. This could improve the acceptability of AVs in the automotive market in the future. The driver tends to move to the outside of the lane gradually after passing the apex when driving in corners on the road with hard-lines on both sides.


2020 ◽  
Author(s):  
Seokbeom Kwon ◽  
Jan Youtie ◽  
Alan L Porter

Abstract This article puts forth a new indicator of emerging technological topics as a tool for addressing challenges inherent in the evaluation of interdisciplinary research. We present this indicator and test its relationship with interdisciplinary and atypical research combinations. We perform this test by using metadata of scientific publications in three domains with different interdisciplinarity challenges: Nano-Enabled Drug Delivery, Synthetic Biology, and Autonomous Vehicles. Our analysis supports the connection between technological emergence and interdisciplinarity and atypicality in knowledge combinations. We further find that the contributions of interdisciplinary and atypical knowledge combinations to addressing emerging technological topics increase or stay constant over time. Implications for policymakers and contributions to the literature on interdisciplinarity and evaluation are provided.


2021 ◽  
Vol 11 (4) ◽  
pp. 1514 ◽  
Author(s):  
Quang-Duy Tran ◽  
Sang-Hoon Bae

To reduce the impact of congestion, it is necessary to improve our overall understanding of the influence of the autonomous vehicle. Recently, deep reinforcement learning has become an effective means of solving complex control tasks. Accordingly, we show an advanced deep reinforcement learning that investigates how the leading autonomous vehicles affect the urban network under a mixed-traffic environment. We also suggest a set of hyperparameters for achieving better performance. Firstly, we feed a set of hyperparameters into our deep reinforcement learning agents. Secondly, we investigate the leading autonomous vehicle experiment in the urban network with different autonomous vehicle penetration rates. Thirdly, the advantage of leading autonomous vehicles is evaluated using entire manual vehicle and leading manual vehicle experiments. Finally, the proximal policy optimization with a clipped objective is compared to the proximal policy optimization with an adaptive Kullback–Leibler penalty to verify the superiority of the proposed hyperparameter. We demonstrate that full automation traffic increased the average speed 1.27 times greater compared with the entire manual vehicle experiment. Our proposed method becomes significantly more effective at a higher autonomous vehicle penetration rate. Furthermore, the leading autonomous vehicles could help to mitigate traffic congestion.


2013 ◽  
Vol 14 (3) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Ma ◽  
Ya Xu ◽  
Guo-qiang Sun ◽  
Li-xia Deng ◽  
Yi-bin Li

Author(s):  
Óscar Pérez-Gil ◽  
Rafael Barea ◽  
Elena López-Guillén ◽  
Luis M. Bergasa ◽  
Carlos Gómez-Huélamo ◽  
...  

AbstractNowadays, Artificial Intelligence (AI) is growing by leaps and bounds in almost all fields of technology, and Autonomous Vehicles (AV) research is one more of them. This paper proposes the using of algorithms based on Deep Learning (DL) in the control layer of an autonomous vehicle. More specifically, Deep Reinforcement Learning (DRL) algorithms such as Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) are implemented in order to compare results between them. The aim of this work is to obtain a trained model, applying a DRL algorithm, able of sending control commands to the vehicle to navigate properly and efficiently following a determined route. In addition, for each of the algorithms, several agents are presented as a solution, so that each of these agents uses different data sources to achieve the vehicle control commands. For this purpose, an open-source simulator such as CARLA is used, providing to the system with the ability to perform a multitude of tests without any risk into an hyper-realistic urban simulation environment, something that is unthinkable in the real world. The results obtained show that both DQN and DDPG reach the goal, but DDPG obtains a better performance. DDPG perfoms trajectories very similar to classic controller as LQR. In both cases RMSE is lower than 0.1m following trajectories with a range 180-700m. To conclude, some conclusions and future works are commented.


2020 ◽  
Vol 10 (4) ◽  
pp. 417-424
Author(s):  
Teng Liu ◽  
Bing Huang ◽  
Zejian Deng ◽  
Hong Wang ◽  
Xiaolin Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document