scholarly journals FruitVegCNN: Power- and Memory-Efficient Classification of Fruits & Vegetables Using CNN in Mobile MPSoC

Author(s):  
Somdip Dey ◽  
Suman Saha ◽  
Amit Singh ◽  
Klaus D. Mcdonald-Maier

<div><div><div><p>Fruit and vegetable classification using Convolutional Neural Networks (CNNs) has become a popular application in the agricultural industry, however, to the best of our knowledge no previously recorded study has designed and evaluated such an application on a mobile platform. In this paper, we propose a power-efficient CNN model, FruitVegCNN, to perform classification of fruits and vegetables in a mobile multi-processor system-on-a-chip (MPSoC). We also evaluated the efficacy of FruitVegCNN compared to popular state-of-the-art CNN models in real mobile plat- forms (Huawei P20 Lite and Samsung Galaxy Note 9) and experimental results show the efficacy and power efficiency of our proposed CNN architecture.</p></div></div></div>

2020 ◽  
Author(s):  
Somdip Dey ◽  
Suman Saha ◽  
Amit Singh ◽  
Klaus D. Mcdonald-Maier

<div><div><div><p>Fruit and vegetable classification using Convolutional Neural Networks (CNNs) has become a popular application in the agricultural industry, however, to the best of our knowledge no previously recorded study has designed and evaluated such an application on a mobile platform. In this paper, we propose a power-efficient CNN model, FruitVegCNN, to perform classification of fruits and vegetables in a mobile multi-processor system-on-a-chip (MPSoC). We also evaluated the efficacy of FruitVegCNN compared to popular state-of-the-art CNN models in real mobile plat- forms (Huawei P20 Lite and Samsung Galaxy Note 9) and experimental results show the efficacy and power efficiency of our proposed CNN architecture.</p></div></div></div>


2020 ◽  
Vol 12 (22) ◽  
pp. 3794
Author(s):  
Salma Taoufiq ◽  
Balázs Nagy ◽  
Csaba Benedek

Automatic building categorization and analysis are particularly relevant for smart city applications and cultural heritage programs. Taking a picture of the facade of a building and instantly obtaining information about it can enable the automation of processes in urban planning, virtual city tours, and digital archiving of cultural artifacts. In this paper, we go beyond traditional convolutional neural networks (CNNs) for image classification and propose the HierarchyNet: a new hierarchical network for the classification of urban buildings from all across the globe into different main and subcategories from images of their facades. We introduce a coarse-to-fine hierarchy on the dataset and the model learns to simultaneously extract features and classify across both levels of hierarchy. We propose a new multiplicative layer, which is able to improve the accuracy of the finer prediction by considering the feedback signal of the coarse layers. We have quantitatively evaluated the proposed approach both on our proposed building datasets, as well as on various benchmark databases to demonstrate that the model is able to efficiently learn hierarchical information. The HierarchyNet model is able to outperform the state-of-the-art convolutional neural networks in urban building classification as well as in other multi-label classification tasks while using significantly fewer parameters.


Author(s):  
Titus Josef Brinker ◽  
Achim Hekler ◽  
Jochen Sven Utikal ◽  
Dirk Schadendorf ◽  
Carola Berking ◽  
...  

BACKGROUND State-of-the-art classifiers based on convolutional neural networks (CNNs) generally outperform the diagnosis of dermatologists and could enable life-saving and fast diagnoses, even outside the hospital via installation on mobile devices. To our knowledge, at present, there is no review of the current work in this research area. OBJECTIVE This study presents the first systematic review of the state-of-the-art research on classifying skin lesions with CNNs. We limit our review to skin lesion classifiers. In particular, methods that apply a CNN only for segmentation or for the classification of dermoscopic patterns are not considered here. Furthermore, this study discusses why the comparability of the presented procedures is very difficult and which challenges must be addressed in the future. METHODS We searched the Google Scholar, PubMed, Medline, Science Direct, and Web of Science databases for systematic reviews and original research articles published in English. Only papers that reported sufficient scientific proceedings are included in this review. RESULTS We found 13 papers that classified skin lesions using CNNs. In principle, classification methods can be differentiated according to three principles. Approaches that use a CNN already trained by means of another large data set and then optimize its parameters to the classification of skin lesions are both the most common methods as well as display the best performance with the currently available limited data sets. CONCLUSIONS CNNs display a high performance as state-of-the-art skin lesion classifiers. Unfortunately, it is difficult to compare different classification methods because some approaches use non-public data sets for training and/or testing, thereby making reproducibility difficult.


Author(s):  
Mohammad Amimul Ihsan Aquil ◽  
Wan Hussain Wan Ishak

<span id="docs-internal-guid-01580d49-7fff-6f2a-70d1-7893ec0a6e14"><span>Plant diseases are a major cause of destruction and death of most plants and especially trees. However, with the help of early detection, this issue can be solved and treated appropriately. A timely and accurate diagnosis is critical in maintaining the quality of crops. Recent innovations in the field of deep learning (DL), especially in convolutional neural networks (CNNs) have achieved great breakthroughs across different applications such as the classification of plant diseases. This study aims to evaluate scratch and pre-trained CNNs in the classification of tomato plant diseases by comparing some of the state-of-the-art architectures including densely connected convolutional network (Densenet) 120, residual network (ResNet) 101, ResNet 50, ReseNet 30, ResNet 18, squeezenet and Vgg.net. The comparison was then evaluated using a multiclass statistical analysis based on the F-Score, specificity, sensitivity, precision, and accuracy. The dataset used for the experiments was drawn from 9 classes of tomato diseases and a healthy class from PlantVillage. The findings show that the pretrained Densenet-120 performed excellently with 99.68% precision, 99.84% F-1 score, and 99.81% accuracy, which is higher compared to its non-trained based model showing the effectiveness of using a combination of a CNN model with fine-tuning adjustment in classifying crop diseases.</span></span>


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1078
Author(s):  
Ibon Merino ◽  
Jon Azpiazu ◽  
Anthony Remazeilles ◽  
Basilio Sierra

Deep learning methods have been successfully applied to image processing, mainly using 2D vision sensors. Recently, the rise of depth cameras and other similar 3D sensors has opened the field for new perception techniques. Nevertheless, 3D convolutional neural networks perform slightly worse than other 3D deep learning methods, and even worse than their 2D version. In this paper, we propose to improve 3D deep learning results by transferring the pretrained weights learned in 2D networks to their corresponding 3D version. Using an industrial object recognition context, we have analyzed different combinations of 3D convolutional networks (VGG16, ResNet, Inception ResNet, and EfficientNet), comparing the recognition accuracy. The highest accuracy is obtained with EfficientNetB0 using extrusion with an accuracy of 0.9217, which gives comparable results to state-of-the art methods. We also observed that the transfer approach enabled to improve the accuracy of the Inception ResNet 3D version up to 18% with respect to the score of the 3D approach alone.


2021 ◽  
Author(s):  
Richardson Santiago Teles Menezes ◽  
Angelo Marcelino Cordeiro ◽  
Rafael Magalhães ◽  
Helton Maia

In this paper, state-of-the-art architectures of Convolutional Neural Networks (CNNs) are explained and compared concerning authorship classification of famous paintings. The chosen CNNs architectures were VGG-16, VGG-19, Residual Neural Networks (ResNet), and Xception. The used dataset is available on the website Kaggle, under the title “Best Artworks of All Time”. Weighted classes for each artist with more than 200 paintings present in the dataset were created to represent and classify each artist’s style. The performed experiments resulted in an accuracy of up to 95% for the Xception architecture with an average F1-score of 0.87, 92% of accuracy with an average F1-score of 0.83 for the ResNet in its 50-layer configuration, while both of the VGG architectures did not present satisfactory results for the same amount of epochs, achieving at most 60% of accuracy.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Jorge F. Lazo ◽  
Aldo Marzullo ◽  
Sara Moccia ◽  
Michele Catellani ◽  
Benoit Rosa ◽  
...  

Abstract Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ($$m_1$$ m 1 ) and Mask-RCNN ($$m_2$$ m 2 ), which are fed with single still-frames I(t). The other two models ($$M_1$$ M 1 , $$M_2$$ M 2 ) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. $$M_1$$ M 1 , $$M_2$$ M 2 are fed with triplets of frames ($$I(t-1)$$ I ( t - 1 ) , I(t), $$I(t+1)$$ I ( t + 1 ) ) to produce the segmentation for I(t). Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.


Sign in / Sign up

Export Citation Format

Share Document