scholarly journals Evaluation of scratch and pre-trained convolutional neural networks for the classification of Tomato plant diseases

Author(s):  
Mohammad Amimul Ihsan Aquil ◽  
Wan Hussain Wan Ishak

<span id="docs-internal-guid-01580d49-7fff-6f2a-70d1-7893ec0a6e14"><span>Plant diseases are a major cause of destruction and death of most plants and especially trees. However, with the help of early detection, this issue can be solved and treated appropriately. A timely and accurate diagnosis is critical in maintaining the quality of crops. Recent innovations in the field of deep learning (DL), especially in convolutional neural networks (CNNs) have achieved great breakthroughs across different applications such as the classification of plant diseases. This study aims to evaluate scratch and pre-trained CNNs in the classification of tomato plant diseases by comparing some of the state-of-the-art architectures including densely connected convolutional network (Densenet) 120, residual network (ResNet) 101, ResNet 50, ReseNet 30, ResNet 18, squeezenet and Vgg.net. The comparison was then evaluated using a multiclass statistical analysis based on the F-Score, specificity, sensitivity, precision, and accuracy. The dataset used for the experiments was drawn from 9 classes of tomato diseases and a healthy class from PlantVillage. The findings show that the pretrained Densenet-120 performed excellently with 99.68% precision, 99.84% F-1 score, and 99.81% accuracy, which is higher compared to its non-trained based model showing the effectiveness of using a combination of a CNN model with fine-tuning adjustment in classifying crop diseases.</span></span>

2020 ◽  
Vol 10 (4) ◽  
pp. 1245 ◽  
Author(s):  
Valeria Maeda-Gutiérrez ◽  
Carlos E. Galván-Tejada ◽  
Laura A. Zanella-Calzada ◽  
José M. Celaya-Padilla ◽  
Jorge I. Galván-Tejada ◽  
...  

Tomato plants are highly affected by diverse diseases. A timely and accurate diagnosis plays an important role to prevent the quality of crops. Recently, deep learning (DL), specifically convolutional neural networks (CNNs), have achieved extraordinary results in many applications, including the classification of plant diseases. This work focused on fine-tuning based on the comparison of the state-of-the-art architectures: AlexNet, GoogleNet, Inception V3, Residual Network (ResNet) 18, and ResNet 50. An evaluation of the comparison was finally performed. The dataset used for the experiments is contained by nine different classes of tomato diseases and a healthy class from PlantVillage. The models were evaluated through a multiclass statistical analysis based on accuracy, precision, sensitivity, specificity, F-Score, area under the curve (AUC), and receiving operating characteristic (ROC) curve. The results present significant values obtained by the GoogleNet technique, with 99.72% of AUC and 99.12% of sensitivity. It is possible to conclude that this significantly success rate makes the GoogleNet model a useful tool for farmers in helping to identify and protect tomatoes from the diseases mentioned.


2020 ◽  
Vol 10 (19) ◽  
pp. 6940 ◽  
Author(s):  
Vincenzo Taormina ◽  
Donato Cascio ◽  
Leonardo Abbene ◽  
Giuseppe Raso

The search for anti-nucleus antibodies (ANA) represents a fundamental step in the diagnosis of autoimmune diseases. The test considered the gold standard for ANA research is indirect immunofluorescence (IIF). The best substrate for ANA detection is provided by Human Epithelial type 2 (HEp-2) cells. The first phase of HEp-2 type image analysis involves the classification of fluorescence intensity in the positive/negative classes. However, the analysis of IIF images is difficult to perform and particularly dependent on the experience of the immunologist. For this reason, the interest of the scientific community in finding relevant technological solutions to the problem has been high. Deep learning, and in particular the Convolutional Neural Networks (CNNs), have demonstrated their effectiveness in the classification of biomedical images. In this work the efficacy of the CNN fine-tuning method applied to the problem of classification of fluorescence intensity in HEp-2 images was investigated. For this purpose, four of the best known pre-trained networks were analyzed (AlexNet, SqueezeNet, ResNet18, GoogLeNet). The classifying power of CNN was investigated with different training modalities; three levels of freezing weights and scratch. Performance analysis was conducted, in terms of area under the ROC (Receiver Operating Characteristic) curve (AUC) and accuracy, using a public database. The best result achieved an AUC equal to 98.6% and an accuracy of 93.9%, demonstrating an excellent ability to discriminate between the positive/negative fluorescence classes. For an effective performance comparison, the fine-tuning mode was compared to those in which CNNs are used as feature extractors, and the best configuration found was compared with other state-of-the-art works.


2021 ◽  
Vol 11 (24) ◽  
pp. 11738
Author(s):  
Thomas Teixeira ◽  
Éric Granger ◽  
Alessandro Lameiras Koerich

Facial expressions are one of the most powerful ways to depict specific patterns in human behavior and describe the human emotional state. However, despite the impressive advances of affective computing over the last decade, automatic video-based systems for facial expression recognition still cannot correctly handle variations in facial expression among individuals as well as cross-cultural and demographic aspects. Nevertheless, recognizing facial expressions is a difficult task, even for humans. This paper investigates the suitability of state-of-the-art deep learning architectures based on convolutional neural networks (CNNs) to deal with long video sequences captured in the wild for continuous emotion recognition. For such an aim, several 2D CNN models that were designed to model spatial information are extended to allow spatiotemporal representation learning from videos, considering a complex and multi-dimensional emotion space, where continuous values of valence and arousal must be predicted. We have developed and evaluated convolutional recurrent neural networks, combining 2D CNNs and long short term-memory units and inflated 3D CNN models, which are built by inflating the weights of a pre-trained 2D CNN model during fine-tuning, using application-specific videos. Experimental results on the challenging SEWA-DB dataset have shown that these architectures can effectively be fine-tuned to encode spatiotemporal information from successive raw pixel images and achieve state-of-the-art results on such a dataset.


Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on&nbsp;Imagenet data-sets. We use the pre-trained model and learned&nbsp;weighs to extract the feature from the Dog breeds identification&nbsp;data-set. Afterwards, we applied fine-tuning and dataaugmentation&nbsp;to increase the performance of our test accuracy&nbsp;in classification of dog breeds datasets. The performance of the&nbsp;proposed approaches are compared with the state of the art&nbsp;models of Image-Net datasets such as ResNet-50, DenseNet-121,&nbsp;DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37%&nbsp;84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works&nbsp;on Stanford dog breeds datasets.


2018 ◽  
pp. 99-103
Author(s):  
D. S. Kolesnikov ◽  
D. A. Kuznetsov

State of the art convolutional neural networks provide high accuracy in solving a wide range of problems. Usually it is achieved by a significant increasing their computational complexity and the representation of the network parameters in single-precision floating point numbers. However, due to the limited resources, the application of networks in embedded systems and mobile applications in real time is problematic. One of the methods to solve this problem is to reduce the bit depth of data and use integer arithmetic. For this purpose, the network parameters are quantized. Performing quantization, it is necessary to ensure a minimum loss of recognition accuracy. The article proposes to use an optimal uniform quantizer with an adaptive step. The quantizer step depends on the distribution function of the quantized parameters. It reduces the effect of the quantization error on the recognition accuracy. There are also described approaches to improving the quality of quantization. The proposed quantization method is estimated on the CIFAR-10 database. It is shown that the optimal uniform quantizer for CIFAR-10 database with 8-bit representation of network parameters allows to achieve the accuracy of the initial trained network.


2020 ◽  
Author(s):  
Somdip Dey ◽  
Suman Saha ◽  
Amit Singh ◽  
Klaus D. Mcdonald-Maier

<div><div><div><p>Fruit and vegetable classification using Convolutional Neural Networks (CNNs) has become a popular application in the agricultural industry, however, to the best of our knowledge no previously recorded study has designed and evaluated such an application on a mobile platform. In this paper, we propose a power-efficient CNN model, FruitVegCNN, to perform classification of fruits and vegetables in a mobile multi-processor system-on-a-chip (MPSoC). We also evaluated the efficacy of FruitVegCNN compared to popular state-of-the-art CNN models in real mobile plat- forms (Huawei P20 Lite and Samsung Galaxy Note 9) and experimental results show the efficacy and power efficiency of our proposed CNN architecture.</p></div></div></div>


2020 ◽  
Vol 12 (22) ◽  
pp. 3794
Author(s):  
Salma Taoufiq ◽  
Balázs Nagy ◽  
Csaba Benedek

Automatic building categorization and analysis are particularly relevant for smart city applications and cultural heritage programs. Taking a picture of the facade of a building and instantly obtaining information about it can enable the automation of processes in urban planning, virtual city tours, and digital archiving of cultural artifacts. In this paper, we go beyond traditional convolutional neural networks (CNNs) for image classification and propose the HierarchyNet: a new hierarchical network for the classification of urban buildings from all across the globe into different main and subcategories from images of their facades. We introduce a coarse-to-fine hierarchy on the dataset and the model learns to simultaneously extract features and classify across both levels of hierarchy. We propose a new multiplicative layer, which is able to improve the accuracy of the finer prediction by considering the feedback signal of the coarse layers. We have quantitatively evaluated the proposed approach both on our proposed building datasets, as well as on various benchmark databases to demonstrate that the model is able to efficiently learn hierarchical information. The HierarchyNet model is able to outperform the state-of-the-art convolutional neural networks in urban building classification as well as in other multi-label classification tasks while using significantly fewer parameters.


Author(s):  
Mikhail Krinitskiy ◽  
Polina Verezemskaya ◽  
Kirill Grashchenkov ◽  
Natalia Tilinina ◽  
Sergey Gulev ◽  
...  

Polar mesocyclones (MCs) are small marine atmospheric vortices. The class of intense MCs, called polar lows, are accompanied by extremely strong surface winds and heat fluxes and thus largely influencing deep ocean water formation in the polar regions. Accurate detection of polar mesocyclones in high-resolution satellite data, while challenging, is a time-consuming task, when performed manually. Existing algorithms for the automatic detection of polar mesocyclones are based on the conventional analysis of patterns of cloudiness and involve different empirically defined thresholds of geophysical variables. As a result, various detection methods typically reveal very different results when applied to a single dataset. We develop a conceptually novel approach for the detection of MCs based on the use of deep convolutional neural networks (DCNNs). As a first step, we demonstrate that DCNN model is capable of performing binary classification of 500x500km patches of satellite images regarding MC patterns presence in it. The training dataset is based on the reference database of MCs manually tracked in the Southern Hemisphere from satellite mosaics. We use a subset of this database with MC diameters falling in the range of 200-400 km. This dataset is further used for testing several different DCNN setups, specifically, DCNN built &ldquo;from scratch&rdquo;, DCNN based on VGG16 pre-trained weights also engaging the Transfer Learning technique, and DCNN based on VGG16 with Fine Tuning technique. Each of these networks is further applied to both infrared (IR) and a combination of infrared and water vapor (IR+WV) satellite imagery. The best skills (97% in terms of the binary classification accuracy score) is achieved with the model that averages the estimates of the ensemble of different DCNNs. The algorithm can be further extended to the automatic identification and tracking numerical scheme and applied to other atmospheric phenomena characterized by a distinct signature in satellite imagery.


Sign in / Sign up

Export Citation Format

Share Document