scholarly journals Link Budget Analysis for Reconfigurable Smart Surfaces in Aerial Platforms

Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

<div>Non-terrestrial networks, including Unmanned Aerial Vehicles (UAVs), High Altitude Platform Station (HAPS) and Low Earth Orbiting (LEO) satellites, are expected to have a pivotal role in the sixth generation wireless networks. With their inherent features such as flexible placement, wide footprint, and preferred channel conditions, they can tackle several challenges in current terrestrial networks. However, their successful and widespread adoption relies on energy-efficient on-board communication systems. In this context, the integration of Reconfigurable Smart Surfaces (RSS) into aerial platforms is envisioned as a key enabler of energy-efficient and cost-effective deployments of aerial platforms. Indeed, RSS consist of low-cost reflectors capable of smartly directing signals in a nearly passive way. We investigate in this paper the link budget of RSS-assisted communications under the two discussed RSS reflection paradigms in the literature, namely the specular and the scattering reflection paradigm types. Specifically, we analyze the characteristics of RSS-equipped aerial platforms and compare their communication performance with that of RSS-assisted terrestrial networks, using standardized channel models. In addition, we derive the optimal aerial platforms placements under both reflection paradigms. The obtained results provide important insights for the design of RSS-assisted communications. For instance, given that a HAPS has a large RSS surface, it provides superior link budget performance in most studied scenarios. In contrast, the limited RSS area on UAVs and the large propagation loss in LEO satellite communications make them unfavorable candidates for supporting terrestrial users. Finally, the optimal location of the RSS-equipped platform may depend on the platform’s altitude, coverage footprint, and type of environment.</div>

2021 ◽  
Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

<div>Non-terrestrial networks, including Unmanned Aerial Vehicles (UAVs), High Altitude Platform Station (HAPS) and Low Earth Orbiting (LEO) satellites, are expected to have a pivotal role in the sixth generation wireless networks. With their inherent features such as flexible placement, wide footprint, and preferred channel conditions, they can tackle several challenges in current terrestrial networks. However, their successful and widespread adoption relies on energy-efficient on-board communication systems. In this context, the integration of Reconfigurable Smart Surfaces (RSS) into aerial platforms is envisioned as a key enabler of energy-efficient and cost-effective deployments of aerial platforms. Indeed, RSS consist of low-cost reflectors capable of smartly directing signals in a nearly passive way. We investigate in this paper the link budget of RSS-assisted communications under the two discussed RSS reflection paradigms in the literature, namely the specular and the scattering reflection paradigm types. Specifically, we analyze the characteristics of RSS-equipped aerial platforms and compare their communication performance with that of RSS-assisted terrestrial networks, using standardized channel models. In addition, we derive the optimal aerial platforms placements under both reflection paradigms. The obtained results provide important insights for the design of RSS-assisted communications. For instance, given that a HAPS has a large RSS surface, it provides superior link budget performance in most studied scenarios. In contrast, the limited RSS area on UAVs and the large propagation loss in LEO satellite communications make them unfavorable candidates for supporting terrestrial users. Finally, the optimal location of the RSS-equipped platform may depend on the platform’s altitude, coverage footprint, and type of environment.</div>


2021 ◽  
Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

<div>Non-terrestrial networks, including Unmanned Aerial Vehicles (UAVs), High Altitude Platform Station (HAPS) and Low Earth Orbiting (LEO) satellites, are expected to have a pivotal role in the sixth generation wireless networks. With their inherent features such as flexible placement, wide footprint, and preferred channel conditions, they can tackle several challenges in current terrestrial networks. However, their successful and widespread adoption relies on energy-efficient on-board communication systems. In this context, the integration of Reconfigurable Smart Surfaces (RSS) into aerial platforms is envisioned as a key enabler of energy-efficient and cost-effective deployments of aerial platforms. Indeed, RSS consist of low-cost reflectors capable of smartly directing signals in a nearly passive way. We investigate in this paper the link budget of RSS-assisted communications under the two discussed RSS reflection paradigms in the literature, namely the specular and the scattering reflection paradigm types. Specifically, we analyze the characteristics of RSS-equipped aerial platforms and compare their communication performance with that of RSS-assisted terrestrial networks, using standardized channel models. In addition, we derive the optimal aerial platforms placements under both reflection paradigms. The obtained results provide important insights for the design of RSS-assisted communications. For instance, given that a HAPS has a large RSS surface, it provides superior link budget performance in most studied scenarios. In contrast, the limited RSS area on UAVs and the large propagation loss in LEO satellite communications make them unfavorable candidates for supporting terrestrial users. Finally, the optimal location of the RSS-equipped platform may depend on the platform’s altitude, coverage footprint, and type of environment.</div>


2020 ◽  
Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

In this paper, we derive the link budget relations for<br>communications assisted by reconfigurable smart surfaces (RSS).<br>Specifically, under specular and scattering paradigms, we provide<br>link budget expressions for an RSS-assisted communication on<br>the ground, where the RSS is either mounted on a building, or on<br>an aerial platform, such as an unmanned aerial vehicle (UAV),<br>a high altitude platform station (HAPS), or a low-earth orbit<br>satellite (LEO). The obtained numerical results provide design<br>guidelines for RSS-assisted communication systems, including the<br>recommended aerial platform to use, the size of RSS for each<br>type of the platforms, and the operating frequencies. <br>


2020 ◽  
Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

In this paper, we derive the link budget relations for<br>communications assisted by reconfigurable smart surfaces (RSS).<br>Specifically, under specular and scattering paradigms, we provide<br>link budget expressions for an RSS-assisted communication on<br>the ground, where the RSS is either mounted on a building, or on<br>an aerial platform, such as an unmanned aerial vehicle (UAV),<br>a high altitude platform station (HAPS), or a low-earth orbit<br>satellite (LEO). The obtained numerical results provide design<br>guidelines for RSS-assisted communication systems, including the<br>recommended aerial platform to use, the size of RSS for each<br>type of the platforms, and the operating frequencies. <br>


Author(s):  
Safwan Alfattani ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1941
Author(s):  
Inzamam Ahmad ◽  
Sadiq Ullah ◽  
Shakir Ullah ◽  
Usman Habib ◽  
Sarosh Ahmad ◽  
...  

Modern advancements in wearable smart devices and ultra-high-speed terahertz (THz) communication systems require low cost, low profile, and highly efficient antenna design with high directionality to address the propagation loss at the THz range. For this purpose, a novel shape, high gain antenna for THz frequency range applications is presented in this work. The proposed antenna is based on a photonic bandgap (PBG)-based crystal polyimide substrate which gives optimum performance in terms of gain (9.45 dB), directivity (9.99 dBi), and highly satisfactory VSWR (<1) at 0.63 THz. The performance of the antenna is studied on PBGs of different geometrical configurations and the results are compared with the antenna based on the homogeneous polyimide-based substrate. The effects of variations in the dimensions of the PBG unit cells are also studied to achieve a −10 dB bandwidth of 28.97 GHz (0.616 to 0.64 THz).


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2117
Author(s):  
Yue Yang ◽  
Jiawen Lv ◽  
Baizhu Lin ◽  
Yue Cao ◽  
Yunji Yi ◽  
...  

All-optical devices have a great potential in optical communication systems. As a new material, graphene has attracted great attention in the field of optics due to its unique properties. We propose a graphene-assisted polymer optically controlled thermo-optic switch, based on the Ex01 mode, which can reduce the absorption loss of graphene. Graphene absorbs 980 nm pump light, and uses the heat generated by ohmic heating to switch on and off the signal light at 1550 nm. The simulation results show that, when the graphene is in the right position, we can obtain the power consumption of 9.5 mW, the propagation loss of 0.01 dB/cm, and the switching time of 127 μs (rise)/125 μs (fall). The switching time can be improved to 106 μs (rise) and 102 μs (fall) with silicon substrate. Compared with an all-fiber switch, our model has lower power consumption and lower propagation loss. The proposed switch is suitable for optically controlled fields with low loss and full polarization. Due to the low cost and easy integration of polymer materials, the device will play an important role in the fields of all-optical signal processing and silicon-based hybrid integrated photonic devices.


Author(s):  
Matteo Conti ◽  
Alessandro Guidotti ◽  
Carla Amatetti ◽  
Alessandro Vanelli-Coralli

Sign in / Sign up

Export Citation Format

Share Document