scholarly journals Vit-GAN: Image-to-image Translation with Vision Transformes and Conditional GANS

Author(s):  
Yigit Gunduc

In this paper, we have developed a general-purpose architecture, Vit-Gan, capable of performing most of the image-to-image translation tasks from semantic image segmentation to single image depth perception. This paper is a follow-up paper, an extension of generator based model [1] in which the obtained results were very promising. This opened the possibility of further improvements with adversarial architecture. We used a unique vision transformers-based generator architecture and Conditional GANs(cGANs) with a Markovian Discriminator (PatchGAN) (https://github.com/YigitGunduc/vit-gan). In the present work, we use images as conditioning arguments. It is observed that the obtained results are more realistic than the commonly used architectures.

2021 ◽  
Author(s):  
Yigit Gunduc

In this paper, we have developed a general-purpose architecture, Vit-Gan, capable of performing most of the image-to-image translation tasks from semantic image segmentation to single image depth perception. This paper is a follow-up paper, an extension of generator based model [1] in which the obtained results were very promising. This opened the possibility of further improvements with adversarial architecture. We used a unique vision transformers-based generator architecture and Conditional GANs(cGANs) with a Markovian Discriminator (PatchGAN) (https://github.com/YigitGunduc/vit-gan). In the present work, we use images as conditioning arguments. It is observed that the obtained results are more realistic than the commonly used architectures.


2021 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Isah Charles Saidu ◽  
Lehel Csató

We present a sample-efficient image segmentation method using active learning, we call it Active Bayesian UNet, or AB-UNet. This is a convolutional neural network using batch normalization and max-pool dropout. The Bayesian setup is achieved by exploiting the probabilistic extension of the dropout mechanism, leading to the possibility to use the uncertainty inherently present in the system. We set up our experiments on various medical image datasets and highlight that with a smaller annotation effort our AB-UNet leads to stable training and better generalization. Added to this, we can efficiently choose from an unlabelled dataset.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 15
Author(s):  
Filippo Aleotti ◽  
Giulio Zaccaroni ◽  
Luca Bartolomei ◽  
Matteo Poggi ◽  
Fabio Tosi ◽  
...  

Depth perception is paramount for tackling real-world problems, ranging from autonomous driving to consumer applications. For the latter, depth estimation from a single image would represent the most versatile solution since a standard camera is available on almost any handheld device. Nonetheless, two main issues limit the practical deployment of monocular depth estimation methods on such devices: (i) the low reliability when deployed in the wild and (ii) the resources needed to achieve real-time performance, often not compatible with low-power embedded systems. Therefore, in this paper, we deeply investigate all these issues, showing how they are both addressable by adopting appropriate network design and training strategies. Moreover, we also outline how to map the resulting networks on handheld devices to achieve real-time performance. Our thorough evaluation highlights the ability of such fast networks to generalize well to new environments, a crucial feature required to tackle the extremely varied contexts faced in real applications. Indeed, to further support this evidence, we report experimental results concerning real-time, depth-aware augmented reality and image blurring with smartphones in the wild.


2021 ◽  
Vol 11 (4) ◽  
pp. 1965
Author(s):  
Raul-Ronald Galea ◽  
Laura Diosan ◽  
Anca Andreica ◽  
Loredana Popa ◽  
Simona Manole ◽  
...  

Despite the promising results obtained by deep learning methods in the field of medical image segmentation, lack of sufficient data always hinders performance to a certain degree. In this work, we explore the feasibility of applying deep learning methods on a pilot dataset. We present a simple and practical approach to perform segmentation in a 2D, slice-by-slice manner, based on region of interest (ROI) localization, applying an optimized training regime to improve segmentation performance from regions of interest. We start from two popular segmentation networks, the preferred model for medical segmentation, U-Net, and a general-purpose model, DeepLabV3+. Furthermore, we show that ensembling of these two fundamentally different architectures brings constant benefits by testing our approach on two different datasets, the publicly available ACDC challenge, and the imATFIB dataset from our in-house conducted clinical study. Results on the imATFIB dataset show that the proposed approach performs well with the provided training volumes, achieving an average Dice Similarity Coefficient of the whole heart of 89.89% on the validation set. Moreover, our algorithm achieved a mean Dice value of 91.87% on the ACDC validation, being comparable to the second best-performing approach on the challenge. Our approach provides an opportunity to serve as a building block of a computer-aided diagnostic system in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document