scholarly journals Explainable AI and Random Forest Based Reliable Intrusion Detection system

Author(s):  
Syed Wali ◽  
Irfan Khan

<p>Emerging Cyber threats with an increased dependency on vulnerable cyber-networks have jeopardized all stakeholders, making Intrusion Detection Systems (IDS) the essential network security requirement. Several IDS have been proposed in the past decade for preventing systems from cyber-attacks. Machine learning (ML) based IDS have shown remarkable performance on conventional cyber threats. However, the introduction of adversarial attacks in the cyber domain highlights the need to upgrade these IDS because conventional ML-based approaches are vulnerable to adversarial attacks. Therefore, the proposed IDS framework leverages the performance of conventional ML-based IDS and integrates it with Explainable AI (XAI) to deal with adversarial attacks. Global Explanation of AI model, extracted by SHAP (Shapley additive explanation) during the training phase of Primary Random Forest Classifier (RFC), is used to reassess the credibility of predicted outcomes. In other words, an outcome with low credibility is reassessed by secondary classifiers. This SHAP-based approach helps in filtering out all disguised malicious network traffic and can also enhance user trust by adding transparency to the decision-making process. Adversarial robustness of the proposed IDS was assessed by Hop Skip Jump Attack and CICIDS dataset, where IDS showed 98.5% and 100% accuracy, respectively. Furthermore, the performance of the proposed IDS is compared with conventional algorithms using recall, precision, accuracy, and F1-score as evaluation metrics. This comparative analysis and series of experiments endorse the credibility of the proposed scheme, depicting that the integration of XAI with conventional IDS can ensure credibility, integrity, and availability of cyber-networks.</p>

2021 ◽  
Author(s):  
Syed Wali ◽  
Irfan Khan

<p>Emerging Cyber threats with an increased dependency on vulnerable cyber-networks have jeopardized all stakeholders, making Intrusion Detection Systems (IDS) the essential network security requirement. Several IDS have been proposed in the past decade for preventing systems from cyber-attacks. Machine learning (ML) based IDS have shown remarkable performance on conventional cyber threats. However, the introduction of adversarial attacks in the cyber domain highlights the need to upgrade these IDS because conventional ML-based approaches are vulnerable to adversarial attacks. Therefore, the proposed IDS framework leverages the performance of conventional ML-based IDS and integrates it with Explainable AI (XAI) to deal with adversarial attacks. Global Explanation of AI model, extracted by SHAP (Shapley additive explanation) during the training phase of Primary Random Forest Classifier (RFC), is used to reassess the credibility of predicted outcomes. In other words, an outcome with low credibility is reassessed by secondary classifiers. This SHAP-based approach helps in filtering out all disguised malicious network traffic and can also enhance user trust by adding transparency to the decision-making process. Adversarial robustness of the proposed IDS was assessed by Hop Skip Jump Attack and CICIDS dataset, where IDS showed 98.5% and 100% accuracy, respectively. Furthermore, the performance of the proposed IDS is compared with conventional algorithms using recall, precision, accuracy, and F1-score as evaluation metrics. This comparative analysis and series of experiments endorse the credibility of the proposed scheme, depicting that the integration of XAI with conventional IDS can ensure credibility, integrity, and availability of cyber-networks.</p>


2019 ◽  
Vol 16 (8) ◽  
pp. 3603-3607 ◽  
Author(s):  
Shraddha Khonde ◽  
V. Ulagamuthalvi

Considering current network scenario hackers and intruders has become a big threat today. As new technologies are emerging fast, extensive use of these technologies and computers, what plays an important role is security. Most of the computers in network can be easily compromised with attacks. Big issue of concern is increase in new type of attack these days. Security to the sensitive data is very big threat to deal with, it need to consider as high priority issue which should be addressed immediately. Highly efficient Intrusion Detection Systems (IDS) are available now a days which detects various types of attacks on network. But we require the IDS which is intelligent enough to detect and analyze all type of new threats on the network. Maximum accuracy is expected by any of this intelligent intrusion detection system. An Intrusion Detection System can be hardware or software that analyze and monitors all activities of network to detect malicious activities happened inside the network. It also informs and helps administrator to deal with malicious packets, which if enters in network can harm more number of computers connected together. In our work we have implemented an intellectual IDS which helps administrator to analyze real time network traffic. IDS does it by classifying packets entering into the system as normal or malicious. This paper mainly focus on techniques used for feature selection to reduce number of features from KDD-99 dataset. This paper also explains algorithm used for classification i.e., Random Forest which works with forest of trees to classify real time packet as normal or malicious. Random forest makes use of ensembling techniques to give final output which is derived by combining output from number of trees used to create forest. Dataset which is used while performing experiments is KDD-99. This dataset is used to train all trees to get more accuracy with help of random forest. From results achieved we can observe that random forest algorithm gives more accuracy in distributed network with reduced false alarm rate.


2019 ◽  
Vol 8 (3) ◽  
pp. 4760-4763

This paper proposes are utilizing support vector machine (SVM), Neural networks and decision tree C5 algorithms for anticipating undesirable data's. To dispose of DoS attack we have the intrusion detection systems however we have to keep up the exhibition of the intrusion detection systems. Along these lines, we propose a novel model for intrusion detection system in cloud platform utilizing random forest classifier and XG Boost model. Random Forest (RF) is a group classifier and performs all around contrasted with other conventional classifiers for viable classification of attacks. Intrusion detection system is made quick and effective by utilization of ideal feature subset selection utilizing IG. In this paper, we showed DDoS anomaly detection on the open Cloud DDoS attack datasets utilizing Random forest and Gradient Boosting (GB) machine learning (ML) model.


Intrusion Detection Systems (IDS) is used as a tool to detect intrusions on IT networks, providing support in network monitoring to identify and avoid possible attacks. Most such approaches adopt Signature-based methods for detecting attacks which include matching the input event to predefined database signatures. Signature based intrusion detection acts as an adaptable device security safeguard technology. This paper discusses various Signature-based Intrusion Detection Systems and their advantages; given a set of signatures and basic patterns that estimate the relative importance of each intrusion detection system feature, system administrators may help identify cyber-attacks and threats to the network and Computer system. Eighty percent of incidents can be easily and promptly detected using signature-based detection methods if used as a precautionary phase for vulnerability detection and twenty percent rest by anomaly-based intrusion detection system that involves comparing definitions of normal activity or event behavior with observed events in identifying the significant deviations and deciding the traffic to flag.


Author(s):  
Hamizan Suhaimi ◽  
Saiful Izwan Suliman ◽  
Ismail Musirin ◽  
Afdallyna Fathiyah Harun ◽  
Roslina Mohamad

Developing a better intrusion detection systems (IDS) has attracted many researchers in the area of computer network for the past decades. In this paper, Genetic Algorithm (GA) is proposed as a tool that capable to identify harmful type of connections in a computer network. Different features of connection data such as duration and types of connection in network were analyzed to generate a set of classification rule. For this project, standard benchmark dataset known as KDD Cup 99 was investigated and utilized to study the effectiveness of the proposed method on this problem domain. The rules comprise of eight variables that were simulated during the training process to detect any malicious connection that can lead to a network intrusion. With good performance in detecting bad connections, this method can be applied in intrusion detection system to identify attack thus improving the security features of a computer network.


2021 ◽  
Author(s):  
Nasim Beigi Mohammadi

Smart grid is expected to improve the efficiency, reliability and economics of current energy systems. Using two-way flow of electricity and information, smart grid builds an automated, highly distributed energy delivery network. In this thesis, we present the requirements for intrusion detection systems in smart grid, neighborhood area network (NAN) in particular. We propose an intrusion detection system (IDS) that considers the constraints and requirements of the NAN. It captures the communication and computation overhead constraints as well as the lack of a central point to install the IDS. The IDS is distributed on some nodes which are powerful in terms of memory, computation and the degree of connectivity. Our IDS uses an analytical approach for detecting Wormhole attack. We simulate wireless mesh NANs in OPNET Modeler and for the first time, we integrate our analytical model in Maple from MapleSoft with our OPNET simulation model.


2020 ◽  
Vol 3 (7) ◽  
pp. 17-30
Author(s):  
Tamara Radivilova ◽  
Lyudmyla Kirichenko ◽  
Maksym Tawalbeh ◽  
Petro Zinchenko ◽  
Vitalii Bulakh

The problem of load balancing in intrusion detection systems is considered in this paper. The analysis of existing problems of load balancing and modern methods of their solution are carried out. Types of intrusion detection systems and their description are given. A description of the intrusion detection system, its location, and the functioning of its elements in the computer system are provided. Comparative analysis of load balancing methods based on packet inspection and service time calculation is performed. An analysis of the causes of load imbalance in the intrusion detection system elements and the effects of load imbalance is also presented. A model of a network intrusion detection system based on packet signature analysis is presented. This paper describes the multifractal properties of traffic. Based on the analysis of intrusion detection systems, multifractal traffic properties and load balancing problem, the method of balancing is proposed, which is based on the funcsioning of the intrusion detection system elements and analysis of multifractal properties of incoming traffic. The proposed method takes into account the time of deep packet inspection required to compare a packet with signatures, which is calculated based on the calculation of the information flow multifractality degree. Load balancing rules are generated by the estimated average time of deep packet inspection and traffic multifractal parameters. This paper presents the simulation results of the proposed load balancing method compared to the standard method. It is shown that the load balancing method proposed in this paper provides for a uniform load distribution at the intrusion detection system elements. This allows for high speed and accuracy of intrusion detection with high-quality multifractal load balancing.


2021 ◽  
Author(s):  
Navroop Kaur ◽  
Meenakshi Bansal ◽  
Sukhwinder Singh S

Abstract In modern times the firewall and antivirus packages are not good enough to protect the organization from numerous cyber attacks. Computer IDS (Intrusion Detection System) is a crucial aspect that contributes to the success of an organization. IDS is a software application responsible for scanning organization networks for suspicious activities and policy rupturing. IDS ensures the secure and reliable functioning of the network within an organization. IDS underwent huge transformations since its origin to cope up with the advancing computer crimes. The primary motive of IDS has been to augment the competence of detecting the attacks without endangering the performance of the network. The research paper elaborates on different types and different functions performed by the IDS. The NSL KDD dataset has been considered for training and testing. The seven prominent classifiers LR (Logistic Regression), NB (Naïve Bayes), DT (Decision Tree), AB (AdaBoost), RF (Random Forest), kNN (k Nearest Neighbor), and SVM (Support Vector Machine) have been studied along with their pros and cons and the feature selection have been imposed to enhance the reading of performance evaluation parameters (Accuracy, Precision, Recall, and F1Score). The paper elaborates a detailed flowchart and algorithm depicting the procedure to perform feature selection using XGB (Extreme Gradient Booster) for four categories of attacks: DoS (Denial of Service), Probe, R2L (Remote to Local Attack), and U2R (User to Root Attack). The selected features have been ranked as per their occurrence. The implementation have been conducted at five different ratios of 60-40%, 70-30%, 90-10%, 50-50%, and 80-20%. Different classifiers scored best for different performance evaluation parameters at different ratios. NB scored with the best Accuracy and Recall values. DT and RF consistently performed with high accuracy. NB, SVM, and kNN achieved good F1Score.


Sign in / Sign up

Export Citation Format

Share Document