scholarly journals On the Impact of Probabilistic Shaping on Fiber Nonlinearities

Author(s):  
Ahmad Tanha

This paper addresses probabilistic shaping (PS) which has been a latest key technique to approach capacity of fiber-optic channels. We investigate the impact of PS on nonlinear interference (NLI), including self channel interference (SCI), cross channel interference (XCI), and multi channel interference (MCI) for a polarization multiplexed 16*ary quadrature amplitude modulation format in a wavelength division multiplexed (WDM) system. To this end, we consider performing PS in two scenarios: (i) Solely on the channel of interest and (ii) over all C-band WDM channels of a fiber-optic link by analyzing the effective signal to noise ratio and symbol error rate. It is demonstrated that using the enhanced Gaussian noise model with merely 10% overhead in the first scenario, the applied PS scheme increases the SCI and the total experienced NLI by about 19.23%, and 6.6%, respectively. Interestingly, despite enhancing the NLI in this scenario, the simulated PS technique leads to about 47.6% increase in the transmission reach. In the second scenario, the numerical results show increase of the SCI, XCI, and total NLI around 19.8%, 23.34%, and 20.2%, respectively, but resulting in an increase of 32.3% in the transmission reach.<br>

2021 ◽  
Author(s):  
Ahmad Tanha

This paper addresses probabilistic shaping (PS) which has been a latest key technique to approach capacity of fiber-optic channels. We investigate the impact of PS on nonlinear interference (NLI), including self channel interference (SCI), cross channel interference (XCI), and multi channel interference (MCI) for a polarization multiplexed 16*ary quadrature amplitude modulation format in a wavelength division multiplexed (WDM) system. To this end, we consider performing PS in two scenarios: (i) Solely on the channel of interest and (ii) over all C-band WDM channels of a fiber-optic link by analyzing the effective signal to noise ratio and symbol error rate. It is demonstrated that using the enhanced Gaussian noise model with merely 10% overhead in the first scenario, the applied PS scheme increases the SCI and the total experienced NLI by about 19.23%, and 6.6%, respectively. Interestingly, despite enhancing the NLI in this scenario, the simulated PS technique leads to about 47.6% increase in the transmission reach. In the second scenario, the numerical results show increase of the SCI, XCI, and total NLI around 19.8%, 23.34%, and 20.2%, respectively, but resulting in an increase of 32.3% in the transmission reach.<br>


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 392 ◽  
Author(s):  
Awfa Aladwani ◽  
Eylem Erdogan ◽  
Tansal Gucluoglu

Amplify-and-forward (AF) two-way relay networks (TWRNs) have become popular to provide spectrally efficient communication when range extension or energy efficiency is needed by utilizing a simple relay. However, their performance can be significantly degraded in practice due to co-channel interference (CCI) which is increasing due to growing number of wireless devices and recent cognitive and non-orthogonal multiple access techniques. With the motivation of improving the performance of AF-TWRNs, the use of maximal ratio transmission (MRT) is investigated to achieve high reliability while requiring low receiver complexity for the relay. First, the signal-to-interference-plus-noise ratio (SINR) expression is formulated and upper bounded. Then, tight lower bound expressions of outage probability (OP), sum symbol error rate (SSER), and upper bound ergodic sum rate (ESR) for each source and for the overall system are obtained. Besides, array and diversity gains are provided after deriving the asymptotic expressions of OP and SSER at high signal-to-noise ratio (SNR). Furthermore, the impact of channel estimation errors on the performance is also included. Finally, Monte Carlo simulation results which corroborate our theoretical findings are illustrated.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Farman Ali ◽  
Yousaf Khan ◽  
Shahryar Shafique Qureshi

AbstractHigher spectral efficiency and data rate per channel are the most cost-effective approaches to meet the exponential demand of data traffic in optical fiber network communication system. In this paper, diverse modulation formats are analyzed for Dense Wavelength Division Multiplexed system at 100 Gbps * 16=1600 Gbps data rates. The performance analysis of proffered system for Non-Return to Zero, Return to Zero, Carrier- Suppressed Return to Zero and Duo binary RZ with duty cycle 0.5 to 0.7 ranges like modulation formats are considered to find optimum modulation format for a 100 Gbps bit rate per channel optical fiber transmission network system. The simulations are analyzed for different values of input power, length of fiber, nonlinear refractive index, nonlinear dispersion and nonlinear effective area for all above mentioned modulation formats with spacing 100 to 250 GHz. to evaluate the effect of modulation format Fiber Bragg Gratting, optical fiber amplifier and Dispersion Compensation Fiber dispersion compensation techniques are enacted on this proposed optical network system.


2019 ◽  
Vol 9 (3) ◽  
pp. 399 ◽  
Author(s):  
Stanisław Kozdrowski ◽  
Mateusz Żotkiewicz ◽  
Sławomir Sujecki

New generation of optical nodes in dense wavelength division multiplexed networks enables operators to improve service flexibility and make significant savings, both in operational and capital expenditures. Thus the main objective of the study is to minimize optical node resources, such as transponders, multiplexers and wavelength selective switches, needed to provide and maintain high quality dense wavelength division multiplexed network services using new generation of optical nodes. A model based on integer programming is proposed, which includes a detailed description of an optical network node. The impact on the network performance of conventional reconfigurable optical add drop multiplexer technology is compared with colorless, directionless and contentionless approaches. The main focus of the presented study is the analysis of the network congestion problem arising in the context of both reconfigurable optical add drop multiplexer technologies. The analysis is supported by results of numerical experiments carried out for realistic networks of different dimensions and traffic demand sets.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jian Jiao ◽  
Houlian Gao ◽  
Shaohua Wu ◽  
Qinyu Zhang

Space Information Network (SIN) with backbone satellites relaying for vehicular network (VN) communications is regarded as an effective strategy to provide diverse vehicular services in a seamless, efficient, and cost-effective manner in rural areas and highways. In this paper, we investigate the performance of SIN return channel cooperative communications via an amplify-and-forward (AF) backbone satellite relaying for VN communications, where we assume that both of the source-destination and relay-destination links undergo Shadowed-Rician fading and the source-relay link follows Rician fading, respectively. In this SIN-assisted VN communication scenario, we first obtain the approximate statistical distributions of the equivalent end-to-end signal-to-noise ratio (SNR) of the system. Then, we derive the closed-form expressions to efficiently evaluate the average symbol error rate (ASER) of the system. Furthermore, the ASER expressions are taking into account the effect of satellite perturbation of the backbone relaying satellite, which reveal the accumulated error of the antenna pointing error. Finally, simulation results are provided to verify the accuracy of our theoretical analysis and show the impact of various parameters on the system performance.


Author(s):  
Rochak Bajpai ◽  
Sujata Sengar ◽  
Sridhar Iyer ◽  
Shree Prakash Singh

With the steady increase in the heterogeneous Internet traffic, the optical wavelength division multiplexed (WDM) networks based on a mixed line rate (MLR) strategy have emerged as an efficient-solution. Also, with the migration from the legacy to the higher line rate(s), the advanced modulation format(s) (MF) is/are required. However, use of appropriate MF(s) for the higher line rate(s) still remains an open problem. In this article, we compare the performance of an On-Off Keying (OOK), Differential Phase Shift Keying (DPSK) and Duo-binary (DB) MF based MLR network in the presence of various physical layer impairment(s) (PLIs) for which, we propose a mathematical model based on various MFs. As a novelty, we validate the proposed theoretical model’s results by comparing them with the results obtained through simulations from OptSim, which has not been conducted in any existing study(s) thus far. Our simulation results show that the DB MF is perfectly suitable for high spectral-efficient MLR systems owing to its high resistance to various PLIs.


2021 ◽  
pp. 89-94
Author(s):  
I. A. Ershov ◽  

The article deals with signal processing of a fiber-optic temperature sensor using extremal filtering and filtering with Wavelet transforms. The aim of this work is to find a way to reduce the response time in a fiber-optic temperature sensor by using effective signal processing methods. Reducing the response time of systems for monitoring hazardous production facilities is rarely discussed in the literature. The results showed that the use of extreme filtering and filtering with Wavelet transforms can significantly reduce the number of implementations necessary to identify a signal with a low signal-to-noise ratio


Sign in / Sign up

Export Citation Format

Share Document