scholarly journals THERAPEUTIC EFFECTS OF ANKLE JOINT TAPING COMBINED WITH FUNCTIONAL ELECTRICAL STIMULATION FOR THE CORRECTION OF POST STROKE FOOT DROP

2015 ◽  
Vol 4 (2) ◽  
pp. 15-20
Author(s):  
Amna Aamir Khan ◽  
Hassan Abbas ◽  
Rabbia Naseer Ahmed ◽  
Maria Salman

OBJECTIVE Post stroke foot is inability to lift foot at ankle joint due to paralysis of ankle dorsiflexor muscles. It is a common problem faced by stroke survivors. To determine the effect of ankle joint taping combined with functional electrical stimulation on post stroke foot drop. METHODS It was an experimental study. 10 stroke patients with foot drop were enlisted for the study by convenience sampling and randomized into two groups. The group A or treatment group (n-5) received kinesiotaping of ankle joint and functional electrical stimulation while group B or control group (n-5) received functional electrical stimulation only. Clinical assessment was done before and after study. Outcome measures were Manual Muscle Testing, active ankle dorsiflexion and time up and go test. RESULTS Improvement was recorded in both kinesiotaping of ankle joint with functional electrical stimulation and functional electrical stimulation groups for MMT and active range of ankle dorsiflexion and there was no significant improvement in time up and go test. But statistically non-significant difference between both groups is observed (Z=-2.000, p=0.46). CONCLUSIONS These results indicate that there is no clear benefit of ankle joint taping combined with functional electrical stimulation for correction of post stroke foot drop. Keywords: Foot Drop, Functional Electrical Stimulation, Ankle Joint Taping, Kinesiotaping, Dorsiflexion, Manual Muscle Testing

2019 ◽  
Vol 6 ◽  
pp. 205566831986214
Author(s):  
Eukene Imatz-Ojanguren ◽  
Gema Sánchez-Márquez ◽  
Jose Ramón Asiain-Aristu ◽  
Joxean Cueto-Mendo ◽  
Edurne Jaunarena-Goicoechea ◽  
...  

Introduction Functional electrical stimulation applies electrical pulses to the peripheral nerves to artificially achieve a sensory/motor function. When applied for the compensation of foot drop it provides both assistive and therapeutic effects. Multi-field electrodes have shown great potential but may increase the complexity of these systems. Usability aspects should be checked to ensure their success in clinical environments. Methods We developed the Fesia Walk device, based on a surface multi-field electrode and an automatic calibration algorithm, and carried out a usability study to check the feasibility of integrating this device in therapeutic programs in clinical environments. The study included 4 therapists and 10 acquired brain injury subjects (8 stroke and 2 traumatic brain injury). Results Therapists and users were “very satisfied” with the device according to the Quebec User Evaluation of Satisfaction with Assistive Technology scale, with average scores of 4.1 and 4.2 out of 5, respectively. Therapists considered the Fesia Walk device as “excellent” according to the System Usability Scale with an average score of 85.6 out of 100. Conclusions This study showed us that it is feasible to include surface multi-field technology while keeping a device simple and intuitive for successful integration in common neurorehabilitation programs.


2018 ◽  
Vol 20 (5) ◽  
pp. 224-230 ◽  
Author(s):  
Tamsyn Street ◽  
Christine Singleton

Abstract Background: Few studies have examined the long-term consequences of using peroneal nerve functional electrical stimulation (FES) for people with multiple sclerosis (MS). This study examines orthotic effects on a longitudinal cohort and explores additional benefits of FES on self-reported measures such as joint pain. Methods: One hundred forty-five people with foot drop and MS were included (mean age, 52 [range, 28–74] years). Orthotic effects, unassisted walking speed, and clinically important differences (ie, ≥0.05 and ≥0.10 m/s) were derived from walking speed over 10 m. Visual analogue scales examined joint pain, walking effort, trips, confidence, and quality of life. Measures were taken on day 1, after 6 months, and at 2, 3, 4, and 5 years. Results: A significant difference was found overall for walking with FES compared with walking without FES for the 5-year period (P < .001). Despite a significant decline in overall unassisted walking speed at baseline (0.58 m/s) compared with 5 years later (0.46 m/s) (P < .001), participants achieved an orthotic effect with (0.52 m/s) versus without (0.46 m/s) FES after 5 years (P < .001). A significant decrease in joint pain was found after 6 months compared with day 1 (P = .004), which was maintained after 5 years (P < .001). Conclusions: Despite progression of MS, long-term users of FES still benefit from an orthotic effect after using FES for 5 years. The study highlights the need for further work to assess the perceived benefits of FES regarding the experience of joint pain.


2010 ◽  
Vol 90 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Trisha M. Kesar ◽  
Ramu Perumal ◽  
Angela Jancosko ◽  
Darcy S. Reisman ◽  
Katherine S. Rudolph ◽  
...  

Background Foot drop is a common gait impairment after stroke. Functional electrical stimulation (FES) of the ankle dorsiflexor muscles during the swing phase of gait can help correct foot drop. Compared with constant-frequency trains (CFTs), which typically are used during FES, novel stimulation patterns called variable-frequency trains (VFTs) have been shown to enhance isometric and nonisometric muscle performance. However, VFTs have never been used for FES during gait. Objective The purpose of this study was to compare knee and ankle kinematics during the swing phase of gait when FES was delivered to the ankle dorsiflexor muscles using VFTs versus CFTs. Design A repeated-measures design was used in this study. Participants Thirteen individuals with hemiparesis following stroke (9 men, 4 women; age=46–72 years) participated in the study. Methods Participants completed 20- to 40-second bouts of walking at their self-selected walking speeds. Three walking conditions were compared: walking without FES, walking with dorsiflexor muscle FES using CFTs, and walking with dorsiflexor FES using VFTs. Results Functional electrical stimulation using both CFTs and VFTs improved ankle dorsiflexion angles during the swing phase of gait compared with walking without FES (X̅±SE=−2.9°±1.2°). Greater ankle dorsiflexion in the swing phase was generated during walking with FES using VFTs (X̅±SE=2.1°±1.5°) versus CFTs (X̅±SE=0.3±1.3°). Surprisingly, dorsiflexor FES resulted in reduced knee flexion during the swing phase and reduced ankle plantar flexion at toe-off. Conclusions The findings suggest that novel FES systems capable of delivering VFTs during gait can produce enhanced correction of foot drop compared with traditional FES systems that deliver CFTs. The results also suggest that the timing of delivery of FES during gait is critical and merits further investigation.


Author(s):  
Willian Vasconcellos da Silva ◽  
Gabriele Natane de Medeiros Cirne ◽  
Edson Meneses da Silva Filho ◽  
Enio Walker Azevedo Cacho ◽  
Johnnatas Mikael Lopes ◽  
...  

Background: Shoulder subluxation is a common complication of cerebral vascular accident (stroke) and the use of Functional Electrical Stimulation (FES) within the rehabilitation process is extremely important. Objective: To analyze the therapeutic effects of FES in the treatment of chronic shoulder subluxation in post-stroke patients. Method: This is a case study of patients with radiologically subluxation confirmed, who were randomly divided into two groups: Control Group (CG) and Treatment Group (TG). Patients were assessed before and after treatment and at the 2-month follow-up. The assessment consisted of the modified Ashworth scale; passive goniometry; Fugl-Meyer scale; McGill pain questionnaire and evaluation of shoulder subluxation by radiography. The CG did not receive physiotherapeutic intervention; and TG underwent 20 sessions of motor kinesiotherapy and FES associated with functional exercises with a total duration of 1 hour, three times a week, for 7 weeks. The data were analyzed descriptively. Results: The mean age of CG participants was 82.5 ± 1.5 years and of the TG was 70.5 ± 13.5 years. All of them were retired, sedentary, non-smokers/alcoholics and had hemiparesis on the left side. There was an approximate increase of 10o for most joint movements of the shoulder, improvement in McGill scale scores and reduction of shoulder subluxation in TG patients. Conclusion: FES associated with functional movements was effective in reducing the degree of subluxation of the shoulder joint and decreased pain in subjectsin the chronic phase of the post-stroke.


2019 ◽  
Vol 6 ◽  
pp. 205566831982580 ◽  
Author(s):  
Ruslinda Ruslee ◽  
Jennifer Miller ◽  
Henrik Gollee

Introduction: Functional electrical stimulation is a common technique used in the rehabilitation of individuals with a spinal cord injury to produce functional movement of paralysed muscles. However, it is often associated with rapid muscle fatigue which limits its applications. Methods: The objective of this study is to investigate the effects on the onset of fatigue of different multi-electrode patterns of stimulation via multiple pairs of electrodes using doublet pulses: Synchronous stimulation is compared to asynchronous stimulation patterns which are activated sequentially (AsynS) or randomly (AsynR), mimicking voluntary muscle activation by targeting different motor units. We investigated these three different approaches by applying stimulation to the gastrocnemius muscle repeatedly for 10 min (300 ms stimulation followed by 700 ms of no-stimulation) with 40 Hz effective frequency for all protocols and doublet pulses with an inter-pulse-interval of 6 ms. Eleven able-bodied volunteers (28 ± 3 years old) participated in this study. Ultrasound videos were recorded during stimulation to allow evaluation of changes in muscle morphology. The main fatigue indicators we focused on were the normalised fatigue index, fatigue time interval and pre-post twitch–tetanus ratio. Results: The results demonstrate that asynchronous stimulation with doublet pulses gives a higher normalised fatigue index (0.80 ± 0.08 and 0.87 ± 0.08) for AsynS and AsynR, respectively, than synchronous stimulation (0.62 ± 0.06). Furthermore, a longer fatigue time interval for AsynS (302.2 ± 230.9 s) and AsynR (384.4 ± 279.0 s) compared to synchronous stimulation (68.0 ± 30.5 s) indicates that fatigue occurs later during asynchronous stimulation; however, this was only found to be statistically significant for one of two methods used to calculate the group mean. Although no significant difference was found in pre-post twitch–tetanus ratio, there was a trend towards these effects. Conclusion: In this study, we proposed an asynchronous stimulation pattern for the application of functional electrical stimulation and investigated its suitability for reducing muscle fatigue compared to previous methods. The results show that asynchronous multi-electrode stimulation patterns with doublet pulses may improve fatigue resistance in functional electrical stimulation applications in some conditions.


Author(s):  
Seyyed Arash Haghpanah ◽  
Morteza Farrokhnia ◽  
Sajjad Taghvaei ◽  
Mohammad Eghtesad ◽  
Esmaeal Ghavanloo

Functional electrical stimulation (FES) is an effective method to induce muscle contraction and to improve movements in individuals with injured central nervous system. In order to develop the FES systems for an individual with gait impairment, an appropriate control strategy must be designed to accurate tracking performance. The goal of this study is to present a method for designing proportional-derivative (PD) and sliding mode controllers (SMC) for the FES applied to the musculoskeletal model of an ankle joint to track the desired movements obtained by experiments on two healthy individuals during the gait cycle. Simulation results of the developed controller on musculoskeletal model of the ankle joint illustrated that the SMC is able to track the desired movements more accurately than the PD controller and prevents oscillating patterns around the experimentally measured data. Therefore, the sliding mode as the nonlinear method is more robust in face to unmodeled dynamics and model errors and track the desired path smoothly. Also, the required control effort is smoother in SMC with respect to the PD controller because of the nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document