Phylogenetic Analysis of Streptomyces sp. H2AK isolated from soil in Kuşadası

Author(s):  
Demet Tatar ◽  
Aysel Veyisoğlu
2020 ◽  
Vol 27 ◽  
pp. 276-281
Author(s):  
S. I. Tistechok ◽  
Yu. R. Datsyuk ◽  
O. V. Fedorenko ◽  
O. M. Gromyko

Aim. Screening of new natural bioactive molecules is one of the effective approach in combating multidrug-resistant pathogens and tumor cells. The aim of this work was to study the taxonomic characteristic, biological activity and secondary metabolites production of isolate Je 1-42 from the rhizosphere of Juniperus excelsa Bieb. Methods. Microbiological, molecular genetic, high performance liquid chromatography mass spectrometry and scanning electron microscopy methods were used in this work. Results. Based on a phylogenetic analysis of the 16S rRNA and gyrB gene sequences, microbiological and physiological characterization the isolate Je 1-42 has been affiliated to the genus Streptomyces. The isolate Je 1-42 showed a wide range of antibacterial activity. The antibiotics desertomycin A, kanchanamycin A, butylcycloheptylprodigiosine and spectinabilin were annotated in the Je 1-42 extract using dereplication analysis in the database DNP. Conclusions. Actinomycetes strain Streptomyces sp. Je 1-42 is an antagonist of gram-positive, gram-negative bacteria, fungi and produces antibiotics desertomycin A, canchanamycin A, butylcycloheptylprodigiozin, spectinabilin, which has a broad spectrum of antimicrobial activity. The production of these compounds obviously determines the ability of Je 1-42 to inhibit the growth of a wide range of bacteria and fungi. The strain of Streptomyces sp. Je 1-42 was deposited in the Microbial Culture Collection of Antibiotics Producers at Ivan Franko National University of Lviv (collection number Lv 1-042). Keywords: Streptomyces, secondary metabolites, antibacterial activity, phylogenetic analysis.


2017 ◽  
Vol 53 (3) ◽  
pp. 204
Author(s):  
R Kurnijasanti ◽  
Isnaeni Isnaeni ◽  
Poernomo AT ◽  
SA Sudjarwo

Eight isolates of Streptomyces sp. can be isolated from compost soil in Surabaya, Indonesia. The results of biochemical and morphological tests showed that the 8 isolates were new. Phylogenetic analysis was performed on the sequence of 16S rRNA gene. Nucleotide sequences of 16S rRNA gene Streptomyces sp. the compost soil isolates of Surabaya were analyzed and compared with the 16S rRNA gene sequence from the literature. Streptomyces sp. the compost soil of Surabaya based on the 16S rRNA gene showed the new species of Streptomyces. The result of phylogenetic tree diagram showed that Streptomyces Sp-D, Sp-Ep, Sp-G and Sp-I found in Bratang Surabaya compost house land were new isolates. Streptomyces Sp-Ep was a new type of Streptomyces closely related to Streptomyces indonesiasis and Streptomyces nashvillensis. Streptomyces Sp-Ea was Streptomyces olivoreticuli which was still related to Streptomyces yogyakartensis. Streptomyces Sp-F was Streptomyces levis strain NRRL B-24299. Streptomyces Sp-C was Streptomyces filamentosus. Streptomyces Sp-D was a new type of Streptomyces closely related to Streptomyces javensis and Streptomyces roseus. Streptomyces Sp-G was a new type of Streptomyces closely related to Streptomyces roseoviridis strain NBRC 12911 and Streptomyces thermocarboxydovorans strain AT52. Streptomyces Sp-I was a new streptomyces that was still closely related to Streptomyces cangkringensis and Streptomyces asiaticus. Streptomyces Sp-A was Streptomyces laurentii strain: LMG 19959.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
K Ko ◽  
HM Ge ◽  
J Shin ◽  
DC Oh

2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.


2012 ◽  
Vol 3 (3) ◽  
pp. 302-304
Author(s):  
G. D.Sharma G. D.Sharma ◽  
◽  
* Dhritiman Chanda ◽  
D.K. Jha D.K. Jha

2020 ◽  
Vol 62 (1-2) ◽  
pp. 69-108
Author(s):  
S. Y. Kondratyuk ◽  
D. K. Upreti ◽  
G. K. Mishra ◽  
S. Nayaka ◽  
K. K. Ingle ◽  
...  

Eight species, new for science, i.e.: Lobothallia gangwondoana S. Y. Kondr., J.-J. Woo et J.-S. Hur and Phyllopsora dodongensis S. Y. Kondr. et J.-S. Hur from South Korea, Eastern Asia, Ioplaca rinodinoides S. Y. Kondr., K. K. Ingle, D. K. Upreti et S. Nayaka, Letrouitia assamana S. Y. Kondr., G. K. Mishra et D. K. Upreti, and Rusavskia indochinensis S. Y. Kondr., D. K. Upreti et S. Nayaka from India and China, South Asia, Caloplaca orloviana S. Y. Kondr. and Rusavskia drevlyanica S. Y. Kondr. et O. O. Orlov from Ukraine, Eastern Europe, as well as Xanthoria ibizaensis S. Y. Kondr. et A. S. Kondr. from Ibiza Island, Spain, Mediterranean Europe, are described, illustrated and compared with closely related taxa. Fominiella tenerifensis S. Y. Kondr., Kärnefelt, A. Thell et Feuerer is for the first time recorded from Mediterranean Europe, Huriella loekoesiana S. Y. Kondr. et Upreti is provided from Russia for the first time, and H. pohangensis S. Y. Kondr., L. Lőkös et J.-S. Hur for the first time from China, Phoma candelariellae Z. Kocakaya et Halıcı is new to Ukraine, and Staurothele frustulenta Vain. is recorded from the Forest Zone of Ukraine for the first time. Twelve new combinations, i.e.: Bryostigma apotheciorum (for Sphaeria apotheciorum A. Massal.), Bryostigma biatoricola (for Arthonia biatoricola Ihlen et Owe-Larss.), Bryostigma dokdoense (for Arthonia dokdoensis S. Y. Kondr., L. Lőkös, B. G. Lee, J.-J. Woo et J.-S. Hur), Bryostigma epiphyscium (for Arthonia epiphyscia Nyl.), Bryostigma lobariellae (for Arthonia lobariellae Etayo), Bryostigma lapidicola (for Lecidea lapidicola Taylor), Bryostigma molendoi (for Tichothecium molendoi Heufl. ex Arnold), Bryostigma neglectulum (for Arthonia neglectula Nyl.), Bryostigma parietinarium (for Arthonia parietinaria Hafellner et Fleischhacker), Bryostigma peltigerinum (for Arthonia vagans var. peltigerina Almq.), Bryostigma phaeophysciae (for Arthonia phaeophysciae Grube et Matzer), Bryostigma stereocaulinum (for Arthonia nephromiaria var. stereocaulina Ohlert), are proposed based on results of combined phylogenetic analysis based on mtSSU and RPB2 gene sequences. Thirty-one new combinations for members of the genus Polyozosia (i.e.: Polyozosia actophila (for Lecanora actophila Wedd.), Polyozosia agardhiana (for Lecanora agardhiana Ach.), Polyozosia altunica (for Myriolecis altunica R. Mamut et A. Abbas), Polyozosia antiqua (for Lecanora antiqua J. R. Laundon), Polyozosia bandolensis (for Lecanora bandolensis B. de Lesd.), Polyozosia behringii (for Lecanora behringii Nyl.), Polyozosia caesioalutacea (for Lecanora caesioalutacea H. Magn.), Polyozosia carlottiana (for Lecanora carlottiana C. J. Lewis et Śliwa), Polyozosia congesta (for Lecanora congesta Clauzade et Vězda), Polyozosia eurycarpa (for Lecanora eurycarpa Poelt, Leuckert et Cl. Roux), Polyozosia expectans (Lecanora expectans Darb.), Polyozosia flowersiana (Lecanora flowersiana H. Magn.), Polyozosia fugiens (for Lecanora fugiens Nyl.), Polyozosia invadens (for Lecanora invadens H. Magn.), Polyozosia juniperina (for Lecanora juniperina Śliwa), Polyozosia latzelii (for Lecanora latzelii Zahlbr.), Polyozosia liguriensis (for Lecanora liguriensis B. de Lesd.), Polyozosia massei (for Myriolecis massei M. Bertrand et J.-Y. Monnat), Polyozosia mons-nivis (for Lecanora mons-nivis Darb.), Polyozosia oyensis (for Lecanora oyensis M.-P. Bertrand et Cl. Roux), Polyozosia percrenata (for Lecanora percrenata H. Magn.), Polyozosia persimilis (for Lecanora hagenii subsp. persimilis Th. Fr.), Polyozosia poeltiana (for Lecanora poeltiana Clauzade et Cl. Roux), Polyozosia prominens (for Lecanora prominens Clauzade et Vězda), Polyozosia prophetae-eliae (for Lecanora prophetae-eliae Sipman), Polyozosia salina (for Lecanora salina H. Magn.), Polyozosia schofieldii (for Lecanora schofieldii Brodo), Polyozosia sverdrupiana (for Lecanora sverdrupiana Øvstedal), Polyozosia torrida (for Lecanora torrida Vain.), Polyozosia wetmorei (for Lecanora wetmorei Śliwa), Polyozosia zosterae (for Lecanora subfusca? zosterae Ach.)) are proposed.


2020 ◽  
Vol 40 (10) ◽  
pp. 818-823
Author(s):  
Juliana F.V. Braga ◽  
Rodrigo M. Couto ◽  
Marcelo C. Rodrigues ◽  
Roselene Ecco

ABSTRACT: Avipoxvirus is the etiological agent of the avian pox, a well-known disease of captive and wild birds, and it has been associated with tumor-like lesions in some avian species. A white-faced whistling duck (Dendrocygna viduata) raised in captivity was referred to a Veterinary Teaching Hospital in Northeast due to cutaneous nodules present in both wings. A few days after the clinical examination, the animal died naturally. Once submitted to necropsy, histopathological evaluation of the lesions revealed clusters of proliferating epithelial cells expanding toward the dermis. Some of these cells had round, well-defined, intracytoplasmic eosinophilic material suggestive of poxvirus inclusion (Bollinger bodies). PCR performed on the DNA extracted from tissue samples amplified a fragment of the 4b core protein gene (fpv167), which was purified and sequenced. This fragment of Avipoxvirus DNA present in these tumor-like lesions showed high genetic homology (100.0%) with other poxviruses detected in different avian species in several countries, but none of them were related to tumor-like lesions or squamous cell carcinoma. This is the first report of Avipoxvirus detected in tumor-like lesions of a white-faced whistling duck with phylogenetic analysis of the virus.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document