scholarly journals Cell Wall Proteins of Staphylococcus aureus Are Involved in Cross Reactivity with Murine Cytokine Assays

2021 ◽  
Vol 6 (3) ◽  
pp. 89-94
Author(s):  
  Mehak Gull ◽  
Abida Bano ◽  
Numan Javed
Soft Matter ◽  
2015 ◽  
Vol 11 (46) ◽  
pp. 8913-8919 ◽  
Author(s):  
Nicolas Thewes ◽  
Alexander Thewes ◽  
Peter Loskill ◽  
Henrik Peisker ◽  
Markus Bischoff ◽  
...  

Viaa combined experimental and computational approach, the initiation of contact in the adhesion process ofS. aureusis studied. AFM single cell force spectroscopy paired with Monte Carlo simulations reveal that bacteria attach to a surface over distances far beyond the range of classical surface forcesviastochastic binding of thermally fluctuating cell wall proteins.


2009 ◽  
Vol 77 (7) ◽  
pp. 2719-2729 ◽  
Author(s):  
Eva Glowalla ◽  
Bettina Tosetti ◽  
Martin Krönke ◽  
Oleg Krut

ABSTRACT Staphylococcus aureus is an important human pathogen with increasing clinical impact due to the extensive spread of antibiotic-resistant strains. Therefore, development of a protective polyvalent vaccine is of great clinical interest. We employed an intravenous immunoglobulin (IVIG) preparation as a source of antibodies directed against anchorless S. aureus surface proteins for identification of novel vaccine candidates. In order to identify such proteins, subtractive proteome analysis (SUPRA) of S. aureus anchorless cell wall proteins was performed. Proteins reacting with IVIG but not with IVIG depleted of S. aureus-specific opsonizing antibodies were considered vaccine candidates. Nearly 40 proteins were identified by this preselection method using matrix-assisted laser desorption ionization—time of flight analysis. Three of these candidate proteins, enolase (Eno), oxoacyl reductase (Oxo), and hypothetical protein hp2160, were expressed as glutathione S-transferase fusion proteins, purified, and used for enrichment of corresponding immunoglobulin Gs from IVIG by affinity chromatography. Use of affinity-purified anti-Eno, anti-Oxo, and anti-hp2160 antibodies resulted in opsonization, phagocytosis, and killing of S. aureus by human neutrophils. High specific antibody titers were detected in mice immunized with recombinant antigens. In mice challenged with bioluminescent S. aureus, reduced staphylococcal spread was measured by in vivo imaging. The recovery of S. aureus CFU from organs of immunized mice was diminished 10- to 100-fold. Finally, mice immunized with hp2160 displayed statistically significant higher survival rates after lethal challenge with clinically relevant S. aureus strains. Taken together, our data suggest that anchorless cell wall proteins might be promising vaccine candidates and that SUPRA is a valuable tool for their identification.


2019 ◽  
Vol 68 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Kazumasa Iwamoto ◽  
Masaya Moriwaki ◽  
Ryu Miyake ◽  
Michihiro Hide

2002 ◽  
Vol 70 (5) ◽  
pp. 2399-2407 ◽  
Author(s):  
Julie A. Morrissey ◽  
Alan Cockayne ◽  
Jane Hammacott ◽  
Keith Bishop ◽  
Amy Denman-Johnson ◽  
...  

ABSTRACT Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis identified two conserved, immunogenic Staphylococcus aureus cell wall proteins, of 40 and 87 kDa, expressed under iron-restricted growth conditions in vitro and in vivo. N-terminal sequencing and subsequent genome analysis showed that these proteins are encoded by adjacent monocistronic open reading frames designated frpA and frpB, respectively. Studies with an S. aureus fur mutant confirmed that expression of FrpA and FrpB is regulated by Fur but that there also appears to be differential expression of these proteins in different iron-restricted media in vitro. FrpA and FrpB share some amino acid sequence homology with each other and with a putative S. aureus membrane protein, FrpC. frpC is the first gene of a Fur-regulated operon encoding four proteins of unknown function (FrpC, -D, -G, and -H) and the binding protein (FrpE) and permease (FrpF) of a putative iron transporter. Antisense mutagenesis and bioassays showed that FrpA and FrpB are not required for growth of S. aureus under iron-restricted conditions in vitro and do not appear to be involved in the transport of iron from siderophores or in binding of hemin. Further phenotypic analysis suggested that FrpA may be involved in adhesion of S. aureus to plastic in vitro. Binding of S. aureus to microtiter wells was found to be iron regulated, and iron-restricted S. aureus containing antisense frpA or frpAB but not frpB constructs showed reduced binding compared to vector construct controls.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Ozioma F. Nwabor ◽  
Sukanlaya Leejae ◽  
Supayang P. Voravuthikunchai

As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.


Sign in / Sign up

Export Citation Format

Share Document