scholarly journals DESIGN OF VERTICAL AXIS SAVONIUS WINDMILL FOR GENERATING ELECTRICITY USING PERMANENT MAGNET

Tibuana ◽  
2020 ◽  
Vol 3 (01) ◽  
pp. 61-66
Author(s):  
Sagita Rochman

At present the use of wind energy in Indonesia is still relatively low, but has enormous potential. One reason is because the average wind speed in the territory of Indonesia is classified as low wind speed, which ranges from 3 m / s to 5 m / s making it difficult to produce electrical energy on a large scale. However, the wind potential in Indonesia is available almost all year long, making it possible to develop small-scale power generation systems. Innovations in modifying windmills need to be developed so that in conditions of low wind speeds can produce electrical energy. In this research, a prototype was developed by designing a vertical axis windmill power plant model Savonius using a permanent magnet generator, which can produce optimal electrical energy by utilizing relatively low wind speeds.From the generator test it was found that with a rotor rotation of 50 rpm up to 500 rpm can produce an electrical voltage of 0.02V to 10V and an electric current of 0.60A to 4.53A.

2019 ◽  
Vol 1 (1) ◽  
pp. 185-204 ◽  
Author(s):  
Palanisamy Mohan Kumar ◽  
Krishnamoorthi Sivalingam ◽  
Teik-Cheng Lim ◽  
Seeram Ramakrishna ◽  
He Wei

Small wind turbines are key devices for micro generation in particular, with a notable contribution to the global wind energy sector. Darrieus turbines, despite being highly efficient among various types of vertical axis turbines, received much less attention due to their starting characteristics and poor performance in low wind speeds. Radically different concepts are proposed as a potential solution to enhance the performance of Darrieus turbine in the weak wind flows, all along the course of Darrieus turbine development. This paper presents a comprehensive review of proposed concepts with the focus set on the low wind speed performance and critically assessing their applicability based on economics, reliability, complexity, and commercialization aspects. The study is first of its kind to consolidate and compare various approaches studied on the Darrieus turbine with the objective of increasing performance at low wind. Most of the evaluated solutions demonstrate better performance only in the limited tip speed ratio, though they improve the low wind speed performance. Several recommendations have been developed based on the evaluated concepts, and we concluded that further critical research is required for a viable solution in making the Darrieus turbine a low speed device.


2021 ◽  
Vol 13 (22) ◽  
pp. 12720
Author(s):  
Duong Minh Ngoc ◽  
Kuaanan Techato ◽  
Le Duc Niem ◽  
Nguyen Thi Hai Yen ◽  
Nguyen Van Dat ◽  
...  

A novel, small-scale vertical axis wind turbine tree was designed using turbines combining both Darrieus and Savonius blades. We tested for economic viability using wind data collected at a site in Surat Thani, Thailand. The Weibull distribution and Monte Carlo modeling with financial indices (Levelized Cost of Electricity (LCOE), Net Present Value (NPV), Internal Rate of Return (IRR), and Simple Payback Period (SPP)) were used to analyze data. We found that monthly mean wind speeds varied from 2.35 m/s in October to 2.84 m/s in February, corresponding to a wind power of 28.43 W/m2 and 42.68 W/m2. The average annual power output was 1446.1 kWh for May 2019 to April 2021. Results show that for turbine cut-in to cut-out speeds (2 m/s to 15 m/s), the prototype has potential economic feasibility (NPV > 0 for 64.93%), although the small capacity of the wind tree, in combination with the low average wind speed at the Surat Thani test site, showed a lack of economic viability at this specific location (NPV = USD − 20,946.29). A higher-wind-speed location (Chiang Mai) showed viability, especially at a 10 m height (NPV > 0 for 84.83%). We discuss potential conditions that would make broader use of the prototype feasible.


2020 ◽  
Vol 26 (4) ◽  
pp. 64-79
Author(s):  
Ahmed Saadi AlJarakh ◽  
Hussain Yousif Mahmood

As the prices of the fuel and power had fluctuated many times in the last decade and new policies appeared and signed by most of the world countries to eliminate global warming and environmental impact on the earth surface and humanity exciting, an urgent need appeared to develop the renewable energy harnessing technologies on the short-term and long-term and one of these promising technologies are the vertical axis wind turbines, and mostly the combined types. The purpose of the present work is to combine a cavity type Savonius with straight bladed Darrieus to eliminate the poor self-starting ability for Darrieus type and low performance for Savonius type and for this purpose, a three-bladed Darrieus type with symmetrical S1046 airfoil was tested experimentally and numerically at different wind speeds (4.5 m/s, 8 m/s and 10 m/s) and it showed a poor self-starting ability at low wind speed although its higher performance at high wind speed. However when adding the cavities in two setup configuration and testing it at the same conditions, it was found that when adding the cavities as reversed cups in the core of the turbine, the performance increased and the power coefficient reached a maximum value at 10 m/s wind speed and it was observed to be 0.0914 , but when the solidity increased by adding three cavities, the performance was higher at low wind speed (4.5 m/s) but it tragically decreased at higher wind speed which indicates that the performance depends on the solidity and the turbine configuration. On the other hand, the numerical simulation showed a good match with the experimental results although it under-predicted the performance.


Author(s):  
Majid Rashidi ◽  
Jaikrishnan R. Kadambi ◽  
Renjie Ke

Abstract This work presents the design and analysis of a novel wind energy harnessing system that makes use of wind defecting structures to increase the ambient wind speed at geographic locations with relatively low wind speed. The system however reacts to highspeed wind conditions by altering the profile of the wind defecting structure in order to eliminate wind speed amplification attribute of the system, thereby protecting the wind turbine assembly at high speed wind conditions. Although increasing the wind speed is advantageous at geographic locations that the wind speed is typically low; however, from times to time, there could be sustained high-speed wind conditions at the same locations that may damage the wind turbine systems that take advantage of the wind defecting structures. The present work disclosed a wind deflecting structure formed by at least two sail-like partial cylindrical structures that are supported atop of a tower-like foundation in a symmetric arrangement, where one or more wind turbines can be installed in the space between the two partial cylinders. The two partial cylinders, each substantially in form a quarter cylinder is made of plurality of parallel ribbed-like bars, hereafter referred to as “bars” with a flexible thin material that are mechanically supported by the bars. The bars are oriented in a direction perpendicular to the ground; allowing the wing deflecting structures to accept horizonal axis or vertical axis turbines in the space between them. The function of the bars is to allow the thin material, attached to them, to assume a curved configuration substantially in the form of a quarter cylinder. The apparatus is equipped with wind speed monitoring devices, and power source and power transmission means, such as cable-pulleys, chain-sprockets, gears, or mechanical linkages that all work in concert to deploy or stow the thin material along the vertical rods depending to the magnitude of the prevailing wind speed. Preliminary computational fluid dynamics analyses have shown that the wind deflecting structure proposed here in amplifies the wind speed by a factor of 1.65.


Electrician ◽  
2020 ◽  
Vol 14 (2) ◽  
pp. 56-63
Author(s):  
Wiwin A. Oktaviani ◽  
Taufik Barlian ◽  
Yosi Apriani

Intisari  — Setiap yang berputar memiliki potensi energi kinetik, tidak terkecuali putaran kubah masjid. Penelitian ini bertujuan untuk mengetahui potensi pemanfaatan kubah putar masjid sebagai penghasil energi listrik skala kecil. Generator yang diuji cobakan adalah generator magnet permanen dan generator DC yang dirangkaikan dengan turbin kubah putar. Pengujian dilakukan di dua lokasi, di Jembatan Musi 2 Palembang dan di perairan Sungsang Kabupaten Banyuasin untuk mengukur besaran tegangan dan arus output yang dihasilkan pada berbagai kecepatan angin menggunakan multimeter dan anemometer. Hasil penelitian menunjukkan bahwa tegangan yang dihasilkan oleh putaran  kubah masjid menggunakan generator magnet permanen mampu mencapai 14,21 V pada kecepatan angin 3,8 m/det dibandingkan dengan generator DC yang hanya mencapai 3 V pada kecepatan angin 8 m/det. Jika ditinjau dari besaran arus, generator magnet permanen menghasilkan arus konstan sebesar 0,3 A sedangkan pada generator DC arus yang dihasilkan tidak terukur karena nilainya yang amat kecil. Penelitian ini menunjukkan bahwa kubah putar masjid dapat dijadikan sebagai turbin angin pada daerah yang memiliki kecepatan angin rendah. Kata kunci  — kubah masjid putar,generator magnet permanen,generatorDC, turbin angin kecepatan rendah       Abstract - Every spinning has kinetic energy potential; the mosque dome is no exception. This study aims to determine the potential use of the mosque's turning dome as a producer of small-scale electrical energy.  Two types of the generator were tested, which were permanent magnet generator and DC generator, which were coupled with a rotary dome turbine. The test was carried out at two locations, at Palembang Musi 2 Bridge and in the waters of Sungsang, Banyuasin Regency, to measure the amount of voltage and output current generated at various wind speeds using a multimeter and anemometer. The results showed that the voltage generated by the mosque's dome rotation using a permanent magnet generator was able to reach 14.21 V at wind speeds of 3.8 m / sec compared to DC generators, which only reached 3 V at 8 m / s wind speed. When viewed from the amount of current, permanent magnet generators produce a constant current of 0.3 A while in DC generators, the current generated is not measurable because the value is minimal. This research shows that the mosque's rotary dome can be used as a wind turbine in areas that have low wind speeds. Keywords - rotary mosque domes, permanent magnet generators, generator DC, low speed wind turbines


Author(s):  
Ahmed S A Badawi ◽  
Nurul Fadzlin Hasbullah ◽  
Siti Yusoff ◽  
Aisha Hashim ◽  
Mohammed Elamassie

In this paper power energy had been estimated based on actual wind speed records in a coastal city in Palestine Ashdod. The main aims of this study to determine the feasibility of wind turbine and to estimate payback period. Therefore, to encourage investment in renewable energy in Palestine. The daily average wind speed data had been analyzed and fitted to the Weibull probability distribution function. The parameters of Weibull had been calculated by author using Graphical method the applied example wind turbine is 5kw wind turbine generator this is suitable turbine for small scale based on wind speed records on the coastal plain of Palestine. This study calculated the energy that can produce from wind turbine to estimate the revenue of any possible project in wind energy conversion system based on unit area. Energy has been calculated wind energy using two different method based on Weibull data and measured data. The total amount of energy for 2010 is 10749.8 kw.hr/m2 based on measured wind speed. Payback period for the project in wind energy turbines is around 3 years which make the generation electricity possible for small scale but not commercial. This study will lead to assess the wind energy production in Palestine to encourage investment in renewable energy sectors.


Author(s):  
Mohammed S. Mayeed ◽  
Adeel Khalid

Wind energy has been identified as an important source of renewable energy. In this study, several wind turbine designs have been analyzed and optimized designs have been proposed for low wind speed areas around the world mainly for domestic energy consumption. The wind speed range of 4–12 mph is considered, which is selected based on the average wind speeds in the Atlanta, GA and surrounding areas. These areas have relatively low average wind speeds compared to various other parts of the United States. Traditionally wind energy utilization is limited to areas with higher wind speeds. In reality a lot of areas in the world have low average wind speeds and demand high energy consumption. In most cases, wind turbines are installed in remote offshore or away from habitat high wind locations, causing heavy investment in installation and maintenance, and loss of energy transfer over long distance. A few more advantages of small scale wind turbines include reduced visibility, less noise and reduced detrimental environmental effects such as killing of birds, when compared to traditional large turbines. With the latest development in wind turbine technology it is now possible to employ small scale wind turbines that have much smaller foot print and can generate enough energy for small businesses or residential applications. The low speed wind turbines are typically located near residential areas, and are much smaller in sizes compared to the large out of habitat wind turbines. In this study, several designs of vertical and horizontal axes wind turbines are modeled using SolidWorks e.g. no-airfoil theme, airfoil blade, Savonius rotor etc. Virtual aerodynamic analysis is performed using SolidWorks Flow simulation software, and then optimization of the designs is performed based on maximizing the starting rotational torque and ultimate power generation capacity. From flow simulations, forces on the wind turbine blades and structures are calculated, and used in subsequent stress analysis to confirm structural integrity. Critical insight into low wind speed turbines is obtained using various configurations, and optimized designs have been proposed. The study will help in the practical and effective utilization of wind energy for the areas around the globe having low average wind speeds.


Author(s):  
Mohammed S. Mayeed ◽  
Adeel Khalid

Today’s wind turbines are designed in a wide range of vertical and horizontal axis types. In this study, several wind turbines are designed for low wind speed areas around the world mainly for domestic energy consumption. The wind speed range of 4–12 mph is considered, which is selected based on the average wind speeds in the Atlanta, GA and surrounding areas. These areas have relatively low average wind speeds compared to various other parts of the United States. Wind energy has been identified as an important source of renewable energy. Traditionally wind energy utilization is limited to areas with higher wind speeds. In reality a lot of areas in the world including Atlanta, GA., have low average wind speeds and demand high energy consumption. In most cases, wind turbines are installed in remote offshore or away from habitat locations, causing heavy investment in installation and maintenance, and loss of energy transfer over long distances. Therefore, the main focus of this study is to extract wind energy domestically at low wind speeds. A few more advantages of small scale wind turbines include reduced visibility, less noise and reduced detrimental environmental effects such as killing of birds, when compared to traditional large turbines. With the latest development in wind turbine technology it is now possible to employ small scale wind turbines that have much smaller foot print and can generate enough energy for small businesses or residential applications. The low speed wind turbines are typically located near residential areas, and are much smaller in sizes compared to the large out of habitat wind turbines. In this study, several designs of wind turbines are modeled using SolidWorks. Virtual aerodynamic analysis is performed using SolidWorks Flow simulation software, and then optimization of the designs is performed based on maximizing the starting rotational torque and acceleration. From flow simulations, forces on the wind turbine blades and structures are calculated, and used in subsequent stress analysis to confirm structural integrity. Critical insight into the low wind speed turbine design is obtained using various configurations and the results are discussed. The study will help identify bottlenecks in the practical and effective utilization of low speed wind energy, and help devise possible remedial plans for the areas around the globe that get low average wind speeds.


2017 ◽  
Vol 5 (2) ◽  
pp. 83 ◽  
Author(s):  
Boluwaji Olomiyesan ◽  
Onyedi Oyedum ◽  
Paulinus Ugwuoke ◽  
Matthew Abolarin

This study assesses the wind-energyresources in Nigeria by reviewing the existing literature on the subject matter, and also evaluates the wind potential in six locations in the northwest region of the country. Twenty-two years’ (1984 – 2005) wind speed data obtained from the Nigerian Meteorological Agencies (NIMET) were used in this study.Weibull two-parameter and other statistical models were employed in this analysis. Wind speed distribution across Nigeria shows that some locations in the northern part of the country are endowed with higher wind potential than others in the southern part of the country. Moreover, assessment of the wind-energy resources in the study locations reveals that wind energy potential in the region is lowest in Yelwa and highest in Kano; WPD varies from 28.30 Wm-2 to 483.72Wm-2 at 10 m AGL, 45.33 Wm-2 to 775.19 Wm-2 at 30 m AGL and 56.43 Wm-2 to 964.77 Wm-2 at 50 m AGL.Thus Kano, Sokoto and Katsina are suitable for large-scale wind power generation, while Gusau is suitable for small-scale wind power generation; whereas Yelwa and Kaduna may not be suitable for wind power production because of their poor wind potential.


2021 ◽  
Vol 11 (6) ◽  
pp. 7809-7813
Author(s):  
M. F. Basar ◽  
A. M. Norazizi ◽  
I. Mustaffa ◽  
C. T. Colin ◽  
S. N. S. Mirin ◽  
...  

The purpose of this project was to develop an innovative, small-scale, and portable vertical axis wind turbine for power generation. The wind turbine was simple in design and economical. Wind speeds ranging from 2.0ms-1 to 7.0ms-1 were tested on the proposed wind turbine. The experiments revealed that the turbine required a minimum wind speed of 3.9ms-1 to operate. According to the results, the proposed turbine achieved its maximum power output of 5.6W at a rotational speed of 65rpm when the wind speed was 7.0m/s. Additionally, voltage and current increased proportionately with increasing wind speed. The proposed system showed an average coefficient factor between 0.10 and 0.12. This portable wind turbine potentially revolutionizes industry while raising public awareness about clean and renewable energy.


Sign in / Sign up

Export Citation Format

Share Document