scholarly journals Generalized Omnipresence Detection (GOD)

2020 ◽  
Vol 2 (2) ◽  
pp. 85-92
Author(s):  
Haretha Winmalar D ◽  
Vani A K ◽  
Sudharsan R ◽  
Hari Krishna R

Identification and Tracking of a person in a video are useful in applications such as video surveillance. Two levels of tracking are carried out. They are Classification and monitoring of individuals. The human body’s color histogram is used as the basis for monitoring individuals. Our project can detect a human face in a video and store the detected facial features of the Local Binary Pattern Histogram (LBPH). In a video, once a person is detected, it automatically track that individual and assigns a label to that individual. We use the stored LBPH features to track him in any other videos. In this paper, we proposed and compared the efficiency of two algorithms. One constantly updates the background to make it suitable for illumination changes and other uses depth information with RGB. This is the first step in many complex algorithms in computer vision, such as identification of human activity and behavior recognition. The main challenges in human/object detection and tracking are changing illumination and background. Our work is based on image processing and also it learns the activities and stores them using machine learning with the help of OpenCV, an open source computer vision library.

Author(s):  
P. Vyshnavi

Automatic Facial Recognition Attendance System is a type of automated identification system that can recognize any person whose facial features have been saved in the database. This technology could be used by all corporations in the coming years, offices to keep track of who comes and goes. The attendance method is based on facial recognition technology. A real-time, contactless attendance tracking system that is extremely useful in today's world circumstances of a pandemic. After COVID, the work environment will not be the same. Despite the fact that the virus is still spreading, firms are attempting to restore on-premise operations in order to assure business continuity. Employees' health and safety are of utmost importance in such situations. Organizations are looking for methods to provide employees with a COVID-free workspace, and a touchless check-in is the first step. The attendance system uses a set of techniques like Haarcascade classifier and Local Binary Pattern Histogram(LBPH) Face Recognizer in deep learning to detect people in front of the camera and then changes their attendance in the attendance sheet automatically.


Author(s):  
Paolo Piras ◽  
Valerio Varano ◽  
Maxime Louis ◽  
Antonio Profico ◽  
Stanley Durrleman ◽  
...  

AbstractStudying the changes of shape is a common concern in many scientific fields. We address here two problems: (1) quantifying the deformation between two given shapes and (2) transporting this deformation to morph a third shape. These operations can be done with or without point correspondence, depending on the availability of a surface matching algorithm, and on the type of mathematical procedure adopted. In computer vision, the re-targeting of emotions mapped on faces is a common application. We contrast here four different methods used for transporting the deformation toward a target once it was estimated upon the matching of two shapes. These methods come from very different fields such as computational anatomy, computer vision and biology. We used the large diffeomorphic deformation metric mapping and thin plate spline, in order to estimate deformations in a deformational trajectory of a human face experiencing different emotions. Then we use naive transport (NT), linear shift (LS), direct transport (DT) and fanning scheme (FS) to transport the estimated deformations toward four alien faces constituted by 240 homologous points and identifying a triangulation structure of 416 triangles. We used both local and global criteria for evaluating the performance of the 4 methods, e.g., the maintenance of the original deformation. We found DT, LS and FS very effective in recovering the original deformation while NT fails under several aspects in transporting the shape change. As the best method may differ depending on the application, we recommend carefully testing different methods in order to choose the best one for any specific application.


2014 ◽  
Vol 533 ◽  
pp. 218-225 ◽  
Author(s):  
Rapee Krerngkamjornkit ◽  
Milan Simic

This paper describes computer vision algorithms for detection, identification, and tracking of moving objects in a video file. The problem of multiple object tracking can be divided into two parts; detecting moving objects in each frame and associating the detections corresponding to the same object over time. The detection of moving objects uses a background subtraction algorithm based on Gaussian mixture models. The motion of each track is estimated by a Kalman filter. The video tracking algorithm was successfully tested using the BIWI walking pedestrians datasets [. The experimental results show that system can operate in real time and successfully detect, track and identify multiple targets in the presence of partial occlusion.


2003 ◽  
Author(s):  
Muhammad-Amri Abdul Karim ◽  
Khalid Al-Kofahi ◽  
Badrinath Roysam ◽  
Natalie Dowell-Mesfin ◽  
Rifat J. Hussain ◽  
...  
Keyword(s):  

Author(s):  
CHIN-CHEN CHANG ◽  
YUAN-HUI YU

This paper proposes an efficient approach for human face detection and exact facial features location in a head-and-shoulder image. This method searches for the eye pair candidate as a base line by using the characteristic of the high intensity contrast between the iris and the sclera. To discover other facial features, the algorithm uses geometric knowledge of the human face based on the obtained eye pair candidate. The human face is finally verified with these unclosed facial features. Due to the merits of applying the Prune-and-Search and simple filtering techniques, we have shown that the proposed method indeed achieves very promising performance of face detection and facial feature location.


2018 ◽  
Vol 4 (10) ◽  
pp. 112 ◽  
Author(s):  
Mariam Kalakech ◽  
Alice Porebski ◽  
Nicolas Vandenbroucke ◽  
Denis Hamad

These last few years, several supervised scores have been proposed in the literature to select histograms. Applied to color texture classification problems, these scores have improved the accuracy by selecting the most discriminant histograms among a set of available ones computed from a color image. In this paper, two new scores are proposed to select histograms: The adapted Variance score and the adapted Laplacian score. These new scores are computed without considering the class label of the images, contrary to what is done until now. Experiments, achieved on OuTex, USPTex, and BarkTex sets, show that these unsupervised scores give as good results as the supervised ones for LBP histogram selection.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 213
Author(s):  
Sheela Rani ◽  
Vuyyuru Tejaswi ◽  
Bonthu Rohitha ◽  
Bhimavarapu Akhil

Recognition of face has been turned out to be the most important and interesting area in research. A face recognition framework is a PC application that is apt for recognizing or confirming the presence of human face from a computerized picture, from the video frames etc. One of the approaches to do this is by matching the chosen facial features with the pictures in the database. It is normally utilized as a part of security frameworks and can be implemented in different biometrics, for example, unique finger impression or eye iris acknowledgment frameworks. A picture is a mix of edges. The curved line potions where the brightness of the image change intensely are known as edges. We utilize a similar idea in the field of face-detection, the force of facial colours are utilized as a consistent value. Face recognition includes examination of a picture with a database of stored faces keeping in mind the end goal to recognize the individual in the given input picture. The entire procedure covers in three phases face detection, feature extraction and recognition and different strategies are required according to the specified requirements.


2017 ◽  
Vol 17 (2) ◽  
pp. 29-38
Author(s):  
Ratih Purwati ◽  
Gunawan Ariyanto

Face Recognition merupakan teknologi komputer untuk mengidentifikasi wajah manusia melalui gambar digital yang tersimpan di database. Wajah manusia dapat berubah bentuk sesuai dengan ekspresi yang dimilikinya. Wajah manusia dapat berubah bentuk sesuai dengan eskpresi yang dimilikinya. Ekspresi wajah manusia memiliki kemiripan satu sama lain sehingga untuk mengenali suatu ekspresi adalah kepunyaan siapa akan sedikit sulit. Pengenalan wajah terus menjadi topik aktif di zaman sekarang pada penelitian bidang computer vision. Penggunaan wajah manusia sering kita jumpai pada fitur-fitur aplikasi media sosial seperti Snapchat, Snapgram dari Instagram dan banyak aplikasi sosial media lainnya yang menggunakan teknologi tersebut. Pada penelitian ini dilakukan analisa pengenalan ekpresi wajah manusia dengan pendekatan fitur alogaritma Local Binary Pattern dan mencari pengembangan alogaritma dasar Local Binary Pattern yang paling optimal dengan cara menggabungkan metode Hisogram Equalization, Support Vector Machine, dan K-fold cross validation sehingga dapat meningkatkan pengenalan gambar wajah manusia pada hasil yang terbaik. Penelitian ini menginput beberapa database wajah manusia seperti JAFFE yang merupakan gambar wajah manusia wanita jepang yang berjumlah 10 orang dengan 7 ekspresi emosional seperti marah, sedih, bahagia, jijik, kaget, takut dan netral ke dalam sistem. YALE yaitu merupakan gambar wajah manusia orang Amerika. Serta menggunakan dataset CALTECH yang merupakan gambar manusia yang terdiri dari 450 gambar dengan ukuran 896 x 592 piksel dan disimpan dalam format JPEG. Kemudian data tersebut di sesuaikan dengan bentuk tekstur wajah masing-masing. Dari hasil penggabungan ketiga metode diatas dan percobaan-percobaan yang sudah dilakukan, didapatkan hasil yang paling optimal dalam pengenalan wajah manusia yaitu menggunakan dataset JAFFE dengan resolusi 92 x 112 piksel dan dengan tingkat penggunaan processor yang tinggi dapat mempengaruhi waktu kecepatan komputasi dalam proses menjalankan sistem sehingga menghasilkan prediksi yang lebih tepat.


Sign in / Sign up

Export Citation Format

Share Document