scholarly journals Age-related differences in the reactivity of the respiratory division of lungs in rats after administration of magnesium chloride

Author(s):  
R. V. Yanko ◽  
E. G. Chaka ◽  
M. I. Levashov

Introduction. Magnesium is directly involved in the regulation of lung function. However, the effectiveness of various magnesium preparations for activating lung function is not unambiguous. One of the reasons for this may be age-related differences in the nature of structural and functional changes in the lungs in response to the administration of magnesium.Aim. To study the reactivity of the lungs respiratory division of different ages rats to prolonged administration of magnesium chloride.Materials and methods. The experiments were performed on 48 male Wistar rats of 3 and 15 months of age. The experimental animals, in addition to the standard diet, received magnesium chloride at a dose of 50 mg/kg body weight daily for 21 days. At the end of the experiment, lung tissue samples were taken for histomorphological and biochemical studies.Results. At the end of the experiment, 3-month-old rats treated with magnesium chloride showed an increase in the size of the alveoli, a decrease in the relative area of the parenchyma and stroma, and an increase in the relative area of air spaces. A decrease in the thickness of the interalveolar septum and the concentration of oxyproline in the lung tissue of these rats may indicate a decrease in the number of connective tissue elements. In 15- month-old experimental animals, on the contrary, an increase in the relative area of the parenchyma and stroma of the lungs (by 14%), a decrease in the relative area of air spaces (by 12%), and an increase in the concentration of oxyproline in the lungs (by 21%) were observed.Conclusion. Thus, the research results indicate age-related differences in changes in morphological and biochemical parameters characterizing the state of the respiratory division of the lungs with prolonged administration of magnesium chloride. The nature and severity of these changes suggests that in 3-month-old rats magnesium increased lung activity, and in 15-month-old animals, on the contrary, it decreased.

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Patrice Voss ◽  
Maryse Thomas ◽  
You Chien Chou ◽  
José Miguel Cisneros-Franco ◽  
Lydia Ouellet ◽  
...  

We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible.


2010 ◽  
Vol 3 ◽  
pp. BCI.S4210 ◽  
Author(s):  
Akiko Kasai ◽  
Naomi Yamashita ◽  
Naoko Utsunomiya-Tate

Isomerization of amino acids in proteins has recently been identified as a part of the aging process. Increases in D-amino acids as a consequence of isomerization influence the function and structure of proteins. Senescence-related pulmonary diseases, such as chronic obstructive pulmonary disease, are thought to be caused by reductions of lung function with age. We hypothesized that changes of protein structure in lung tissue induced by the isomerization of amino acids could result in decreased lung function. Therefore, we examined whether isomerization of amino acids takes place in the lungs of rats as they age. We measured the content of L- and D-amino acids in collagen 1 by HPLC using a chiral column. We found that collagen 1 was increasingly racemized with age, so that significantly higher proportions of D-Ser were present in 12- and 24-month-old rats than in 8-week-old rats. D-Asp increased slightly but not significantly. We also investigated the localization of collagen 1 in lung tissue. Stacks of collagen 1 were observed in the parenchyma and airway wall, and age-dependent changes were especially prominent in the airway wall. Racemization of collagen 1 could therefore influence lung function and contribute to pulmonary diseases.


2018 ◽  
Vol 314 (6) ◽  
pp. L946-L955 ◽  
Author(s):  
Delphine Sicard ◽  
Andrew J. Haak ◽  
Kyoung Moo Choi ◽  
Alexandria R. Craig ◽  
Laura E. Fredenburgh ◽  
...  

Lung function is inherently mechanical in nature and depends on the capacity to conduct air and blood to and from the gas exchange regions. Variations in the elastic properties of the human lung across anatomical compartments and with aging are likely important determinants of lung function but remain relatively poorly characterized. Here we applied atomic force microscopy microindentation to characterize human lung tissue from subjects ranging in age from 11 to 60 yr old. We observed striking anatomical variations in elastic modulus, with the airways (200- to 350-µm diameter) the stiffest and the parenchymal regions the most compliant. Vessels (diameter < 100 µm) represented an intermediate mechanical environment and displayed diameter-dependent trends in elastic modulus. Binning our samples into younger (11–30 yr old) and older (41–60 yr old) groups, we observed significant age-related increases in stiffness in parenchymal and vessel compartments, with the most pronounced changes in the vessels. To investigate cellular mechanisms that might contribute to vascular stiffening with aging, we studied primary human pulmonary artery smooth muscle cells from subjects ranging in age from 11 to 60 yr old. While we observed no change in the mechanical properties of the cells themselves, we did observe trends toward increases in traction forces and extracellular matrix deposition with aging. These results demonstrate age-related changes in tissue mechanical properties that likely contribute to impaired lung function with aging and underscore the potential to identify mechanisms that contribute to mechanical tissue remodeling through the study of human cells and tissues from across the aging spectrum.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kazim Sahin ◽  
Cemal Orhan ◽  
Mehmet Tuzcu ◽  
Hakki Tastan ◽  
Birdal Bilir ◽  
...  

Purpose. In the present study, we aimed to investigate the effects of tomato powder (TP) on glucose and lipid metabolism, as well as oxidative stress and the NF-κB, mTOR, and Nrf2 pathways during the aging process in healthy rats. Methods and Results. Male Wistar rats were randomly assigned to four groups as follows: (i) Control group 1 (n=15, 3-week old): rats were fed standard diet for 7 weeks; (ii) TP group 1 (n=15, 3-week old): rats were fed standard diet supplemented with TP for 7 weeks; (iii) Control group 2 (n=15, 8-week old): rats were fed standard diet for 69 weeks; and (iv) TP group 2 (8-week old): rats were fed standard diet supplemented with TP for 69 weeks. TP supplementation significantly reduced the hyperglycemia, hypertriglyceridemia, and hypercholesterolemia and improved liver function and kidney function in 77-week old rats compared with the control animals (P<0.05). In addition, TP significantly decreased the serum and liver MDA levels (P<0.003 and P<0.001, respectively) while increasing the activities of liver SOD (P<0.001), CAT (P<0.008), and GPx (P<0.01) compared with the control groups in both 10-week-old and 77-week-old rats (P<0.05). Age-related increases in phosphorylation of NF-κBp65, mTOR, 4E-BP1, and P70S6K were observed in livers of 77-week-old rats compared to those of 10-week-old rats (P<0.001). TP supplementation decreased the expression of NF-κBp65 and activation of mTOR, 4E-BP1, and P70S6K in livers of 77-week-old rats compared to the control animals. Moreover, TP supplementation significantly elevated Nrf2 expression in livers of both 10-week-old and 77-week-old rats (P<0.05). Conclusion. TP ameliorates age-associated inflammation and oxidative stress through the inhibition of NF-κBp65, mTOR pathways, and Nrf2 activation may explain the observed improvement in glucose and lipid metabolism as well as the improved liver and kidney functions.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1916-P
Author(s):  
REBECCA L. SCALZO ◽  
GRAHAME F. EVANS ◽  
SARA E. HULL ◽  
LESLIE KNAUB ◽  
LORI A. WALKER ◽  
...  

Author(s):  
И.Д. Габдрахманова ◽  
В.А. Мышкин ◽  
Д.А. Еникеев ◽  
А.Р. Гимадиева

Цель исследования: изучение влияния сукцината 1,3,6-триметил-5-гидроксиурацила на антиоксидантную систему и свободнорадикальные процессы в печени взрослых и старых крыс при воздействии тетрахлорметана. Методика. В эксперименте использованы половозрелые животные 12-месячного возраста со средней массой 250 г и старые животные 24-месячного возраста, средней массой 395 г по 30 особей в каждой возрастной группе. Токсическое поражение печени вызывали подкожным введением 50%-ного масляного раствора тетрахлорметана (ТХМ, 2 г/кг) в течение 4 сут. Одновременно с токсикантом опытным животным внутрибрюшинно вводили водный раствор коплексного соединения сукцинат-1,3,6-триметил-5-гидроксиурацила (2,5 мг/100 г) 3 раза в сут. в течение первых 4 сут. и в течение последующих 3 сут. 1 раз в сут. Контролем служили опытные животные, которым вводили физиологический раствор в том же объеме. Изучали окислительную модификацию белков, перекисное окисление липидов (по содержанию ТБК-реагирующих продуктов, уровню гидроперекисей липидов и содержанию диеновых конъюгатов). Состояние антиоксидантной системы оценивали по активности ферментов супероксиддисмутазы, каталазы и глутатионпероксидазы, определяемых биохимическими методами. Антирадикальную активность комплексного соединения и его составляющих субстанций исследовали в модельной системе «этилбензол-ледяная уксусная кислота» с вычислением константы К - скорости взаимодействия перекисных радикалов с молекулами изучаемого соединения в сравнении с эталонным антиоксидантом-ионолом с витамином Е. Результаты. Сукцинат + 1,3,6-триметил-5-гидрокси-урацила существенно снижает токсическое действие ТХМ на печень взрослых и старых крыс, устраняет дисбаланс в системах свободнорадикального окисления белков у старых крыс, статистически значимо улучшает показатели свободнорадикального окисления (СРО) липидов в печени взрослых и старых крыс: снижает уровень продуктов ПОЛ - гидроперекисей, диеновых конъюгатов, ТБК-реагирующих продуктов, а также улучшает работу антиоксидантной системы (АОС), повышая активность каталазы, супероксиддисмутазы и глутатионпероксидазы. Установлена высокая антирадикальная активность изучаемого препарата сопоставимая с активностью эталонного антиоксиданта ионола. Заключение. Сукцинат и его производные способны выступать как индивидуальные вещества с непосредственным антирадикальным механизмом действия, а не только как стимуляторы ферментативных систем антиоксидантной защиты. Aim. To study the effect of a complex compound, 1,3,6-trimethyl-5-hydroxyuracil succinate, on the antioxidant system and free radical processes induced by carbon tetrachloride in the liver of adult and old rats. Methods. The study used sexually mature animals aged 12 months and weighing 250 g and old animals aged 24 months weighing 395 g (total n= 60, 30 rats in each age group). Toxic damage of liver was induced by subcutaneous injections of a 50% oil solution of carbon tetrachloride (CTC) at 2 g/kg for 4 days. Together with the toxicant, experimental animals were injected with a water solution of a complex compound, succinate 1,3,6-trimethyl-5-hydroxyuracil, at a dose of 2.5 mg/100 g, i.p., 3 times per day for the first 4 days and once daily for the following 3 days. Experimental animals were used as controls, which were administered saline in the same volume. Oxidative modifications of proteins, lipid peroxidation (by levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, and conjugated dienes) were studied. Condition of the antioxidant system was evaluated by activities of superoxide dismutase, catalase, and glutathione peroxidase using biochemical methods. Antiradical activity of the complex compound and its components was studied in a model system of ethylbenzene-glacial acetic acid; the K7 constant of the rate of peroxide radical interaction with molecules of the studied compound was compared with the reference antioxidant ionol with vitamin E. Results. Succinate +1.3.6-trimethyl-5-hydroxyuracil, considerably reduced TXM hepatotoxicity in adult and old rats; removed the disbalance in free radical systems of protein oxidation in old rats; significantly improved indexes of free-radical oxidation (FRO) of hepatic lipids in adult and old rats; decreased levels of LP products, hydroperoxides, conjugated dienes, and TBARS, and enhanced performance of the antioxidant system (AOS) by increasing activities of catalase, superoxide dismutase, and glutathione peroxidase. The study demonstrated a high antiradical activity of the study drug comparable with the activity of the reference antioxidant, ionol. Сonclusion. Succinate and its derivatives can perform as individual substances with a direct antiradical mechanism of action rather than as stimulators of enzymic systems of antioxidant defence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatyana V. Sukhacheva ◽  
Natalia V. Nizyaeva ◽  
Maria V. Samsonova ◽  
Andrey L. Cherniaev ◽  
Artem A. Burov ◽  
...  

AbstractTelocytes are interstitial cells with long, thin processes by which they contact each other and form a network in the interstitium. Myocardial remodeling of adult patients with different forms of atrial fibrillation (AF) occurs with an increase in fibrosis, age-related isolated atrial amyloidosis (IAA), cardiomyocyte hypertrophy and myolysis. This study aimed to determine the ultrastructural and immunohistochemical features of cardiac telocytes in patients with AF and AF + IAA. IAA associated with accumulation of atrial natriuretic factor was detected in 4.3–25% biopsies of left (LAA) and 21.7–41.7% of right (RAA) atrial appendage myocardium. Telocytes were identified at ultrastructural level more often in AF + IAA, than in AF group and correlated with AF duration and mitral valve regurgitation. Telocytes had ultrastructural signs of synthetic, proliferative, and phagocytic activity. Telocytes corresponded to CD117+, vimentin+, CD34+, CD44+, CD68+, CD16+, S100-, CD105- immunophenotype. No significant differences in telocytes morphology and immunophenotype were found in patients with various forms of AF. CD68-positive cells were detected more often in AF + IAA than AF group. We assume that in aged AF + IAA patients remodeling of atrial myocardium provoked transformation of telocytes into “transitional forms” combining the morphological and immunohistochemical features with signs of fibroblast-, histiocyte- and endotheliocyte-like cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yue Yang ◽  
Tingting Di ◽  
Zixiao Zhang ◽  
Jiaxin Liu ◽  
Congli Fu ◽  
...  

Abstract Background Establishment of a mouse model is important for investigating the mechanism of chronic obstructive pulmonary disease (COPD). In this study, we observed and compared the evolution of the pathology in two mouse models of COPD induced by cigarette smoke (CS) exposure alone or in combination with lipopolysaccharide (LPS). Methods One hundred eight wild-type C57BL/6 mice were equally divided into three groups: the (1) control group, (2) CS-exposed group (CS group), and (3) CS + LPS-exposed group (CS + LPS group). The body weight of the mice was recorded, and noninvasive lung function tests were performed monthly. Inflammation was evaluated by counting the number of inflammatory cells in bronchoalveolar lavage fluid and measuring the expression of the IL-6 mRNA in mouse lung tissue. Changes in pathology were assessed by performing hematoxylin and eosin and Masson staining of lung tissue sections. Results The two treatments induced emphysema and airway remodeling and decreased lung function. Emphysema was induced after 1 month of exposure to CS or CS + LPS, while airway remodeling was induced after 2 months of exposure to CS + LPS and 3 months of exposure to CS. Moreover, the mice in the CS + LPS group exhibited more severe inflammation and airway remodeling than the mice in the CS group, but the two treatments induced similar levels of emphysema. Conclusion Compared with the single CS exposure method, the CS + LPS exposure method is a more suitable model of COPD in airway remodeling research. Conversely, the CS exposure method is a more suitable model of COPD for emphysema research due to its simple operation.


Sign in / Sign up

Export Citation Format

Share Document