Thin coatings with tetrahedral amorphous carbon structure and their behavior in boundary lubrication conditions

2020 ◽  
pp. 506-511
Author(s):  
V.D. Samusenko ◽  
I.A. Zavidovskii ◽  
O.A. Streletskii ◽  
I.A. Buyanovskii ◽  
M.M. Khrushchov ◽  
...  

The results of an investigation of the structural peculiarities of the thin ta-C coatings obtained by the method of impulse arc sputtering of graphite and of their tribological tests in boundary lubrication conditions are presented.

2003 ◽  
Vol 19 (6) ◽  
pp. 447-453 ◽  
Author(s):  
O. O. Ajayi ◽  
A. Kovalchenko ◽  
J. G. Hersberger ◽  
A. Erdemir ◽  
G. R. Fenske

Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 54
Author(s):  
Valdicleide Silva Mello ◽  
Marinalva Ferreira Trajano ◽  
Ana Emilia Diniz Silva Guedes ◽  
Salete Martins Alves

Additives are essential in lubricant development, improving their performance by the formation of a protective film, thus reducing friction and wear. Some such additives are extreme pressure additives. However, due to environmental issues, their use has been questioned because their composition includes sulfur, chlorine, and phosphorus. Nanoparticles have been demonstrated to be a suitable substitute for those additives. This paper aims to make a comparison of the tribological performance of conventional EP additives and oxides nanoparticles (copper and zinc) under boundary lubrication conditions. The additives (nanoparticles, ZDDP, and sulfur) were added to mineral and synthetic oils. The lubricant tribological properties were analyzed in the tribometer HFRR (high frequency reciprocating rig), and during the test, the friction coefficient and percentual of film formation were measured. The wear was analyzed by scanning electron microscopy. The results showed that the conventional EP additives have a good performance owing to their anti-wear and small friction coefficient in both lubricant bases. The oxides nanoparticles, when used as additives, can reduce the friction more effectively than conventional additives, and displayed similar behavior to the extreme pressure additives. Thus, the oxide nanoparticles are more environmentally suitable, and they can replace EP additives adapting the lubricant to current environmental requirements.


Sign in / Sign up

Export Citation Format

Share Document