Study of thin-sheet lap welding joint strain-stress state

Author(s):  
K.Yu. Trukhanov ◽  
V.V. Bulychev ◽  
M.I. Shatalov

The results of steel sheet lap joint strain-stress state are presented. Welding joint parameters requirements are analyzed. The effect of 2 mm welded joint parameters and shape on the strain-stress state using ANSYS software package is studied.

2021 ◽  
Vol 2096 (1) ◽  
pp. 012115
Author(s):  
I K Andrianov

Abstract The scientific research is devoted to the mathematical modeling of the optimal topology of stamps with a complex forming surface. Topological optimization is based on the SIMP method by creating a field of pseudo-densities and minimizing the pliability of the structure under the influence of load. When setting the problem, it is proposed to take into account the fatigue strength of polymers, taking into account the restrictions on the stress state. According to the results of the calculation in the ANSYS software package, an optimal redistribution of the stamp material and a reduction in volume due to the removal of elements that have little effect on the rigidity of the structure is obtained. The results of the study can be further applied in the field of hot and cold stamping by creating stamping tools of minimal volume.


2019 ◽  
Vol 822 ◽  
pp. 291-297
Author(s):  
Arseniy A. Rulimov ◽  
Daria D. Kuzavkova ◽  
Sergey A. Nemov ◽  
Alexandr Maksimovich Zolotov

In this work, p-type thermoelectric material was produced by hot extrusion of pre-synthesized in injection molding machine Bi0.5Sb1.5Te3 solid solution. During the research radial distribution of the Seebeck coefficient was confirmed and described in material’s cross section using thermal measuring probe. Such nonuniformity of the Seebeck coefficient is correlated with the strain-stress state of extrudate specifically with the distribution of accumulated strain intensity, which was obtained by mathematical modeling of extrusion process using the software package DEFORM.


Author(s):  
Aleksey Belozerov ◽  
Mikhail Bondar ◽  
Aleksader Rodionov

This paper presents calculation procedure for welding-induced transverse strains of hull plating and floors in ANSYS software package. The results have been confirmed by an experiment performed in real factory conditions.


The thickness of the heat-affected zone (HAZ) has a great influence on the strength of the welded joint, so one of the important tasks is to control the HAZ to a small enough level, through using the suitable heat-input (qd). In this study, the authors use SYSWELD software to compute and build a relationship between the heat-input and the thickness of the heat-affected zone in the plate thickness direction to find the right heat-input for researched welding joint. The simulation results show that when welding the root pass with qd > 552 J/mm and the cap pass with 754 J/mm < qd < 1066 J/mm, the thickness of HAZ were increased with a function almost linearly.


2014 ◽  
Vol 794-796 ◽  
pp. 389-394
Author(s):  
Tomo Ogura ◽  
Taichi Nishida ◽  
Makoto Takahashi ◽  
Hidehito Nishida ◽  
Mitsuo Fujimoto ◽  
...  

A friction stir welded A3003 aluminum alloy /SUS304 stainless steel dissimilar lap joint was successfully produced. A sound joint that fractured at the base metal was obtained in the center region of the joint through the reaction layer of aluminum-rich intermetallic compounds with nanoorder thickness. The microstructural changes at the interface of the joint was examined by studying the hole left by the extracted welding tool produced at the end of the friction stir welding (FSW) bead using transmission electron microscopy (TEM). Mixed layers consisted of ultra-fined intermetallic compounds and stainless steel were observed. The stirred aluminum alloy flows onto the mixed layer after the tool transit and the joining was achieved. Based on the TEM observations, the joining process of the lap joint was also discussed.


2020 ◽  
Vol 43 (5) ◽  
pp. 907-918
Author(s):  
Xiao Wang ◽  
Xue Wang ◽  
Chuang Wang ◽  
Ya‐Lin Zhang ◽  
Qiao‐Sheng Huang

2020 ◽  
Vol 299 ◽  
pp. 351-357
Author(s):  
Sergey A. Tipalin ◽  
Michael A. Petrov ◽  
Yuriy A. Morgunov

During the bending operation of the thin sheet materials by the punch with the near-to-zero radius the special technological operation should be carried out. It means that the metal sheet obtained a certain thinning value, which is usually done in the form of the channel-concentrator or groove by pre-drawing operation in a cold state. It follows to the pre-straining and strengthening of the material. The authors investigated the strain hardened sheet's area after roll forming process theoretically, and obtained the strain-stress distribution inside the sheet during the bending operation. It was found out that the increase of the prior deformation during pre-straining in the bend layer follows to the increase of the radial and tangential stresses and displacement of the neutral axis inside the blank during bending operation. As a result, the bending moment changes its values depends on the punch radius and strain hardening.


Sign in / Sign up

Export Citation Format

Share Document