scholarly journals EVALUAREA SOLICITĂRILOR TERMICE ȘI A DURATEI DE VIAȚĂ A TRANSFORMATOARELOR DE DISTRIBUȚIE AFLATE ÎN REGIM PERIODIC NESINUSOIDAL

Author(s):  
Emil CAZACU ◽  
Laurentiu-Marius DUMITRAN ◽  
Lucian PETRESCU

Electrical transformers are some of the most important equipment in the entire electricity distribution chain. Their operation with optimal values of the parameters (electrical, thermal and mechanical) ensures the continuous supply of consumers. The modern electrical loads of power distribution transformers are often nonlinear and generate several power quality problems, especially the distortion of the waveform of the current that flows through the windings of the transformer. This generates additional stresses (electrical and thermal) of the various components of the transformer (originally designed to operate in pure sinusoidal mode) which can cause abnormal (faulty) operation of the transformer and ultimately reducing its life (estimated by the manufacturer for permanent sinusoidal regime). In order to prevent or diminish the negative effects of the nonsinusoidal regime on the transformer, a deliberate limitation (reduction) of its maximum load is performed. The procedure is known as transformer derating. Its main aim is to establish the most appropriate declassification factors (denomination), resulting from the correlation of the nominal and constructive data of the transformer with the power quality parameters, measured in its secondary part (usually, these are the current distortion level and the corresponding spectrum harmonic). This paper analyzes qualitatively and quantitatively these aspects and proposes a downgrading procedure for in-service transformers which it illustrates in a case study.

Author(s):  
Budi Srinivasarao ◽  
G. Sreenivasan ◽  
Swathi Sharma

Since last decade, due to advancement in technology and increasing in the electrical loads and also due to complexity of the devices the quality of power distribution is decreases. A Power quality issue is nothing but distortions in current, voltage and frequency that affect the end user equipment or disoperation; these are main problems of power quality so compensation for these problems by DPFC is presented in this paper. The control circuits for DPFC are designed by using line currents, series reference voltages and these are controlled by conventional Neuro-Fuzzy controllers. The results are observed by MATLAB/SIMULINK model.


Author(s):  
May Phone Thit

Nowadays, power quality is one of the major problems in electric power distribution system. The poor power quality at distribution level can affect the operation and performance of sensitive and critical loads. In the distribution systems, poor power quality results in various problems such as higher power losses, harmonics, sag and swells in the voltage, and poor power factor., etc. Unified Power Quality Conditioner (UPQC) is the only versatile device which can mitigate several power quality problems related with distribution system. A UPQC that combines the operations of a Distribution Static Compensator (D-STATCOM) and Dynamic Voltage Restorer (DVR) together with the shunt and series active control devices. UPQC can solve the problems related to the voltage/current harmonics, voltage sag/swell and unbalance in distribution system. To evaluate the performance improvement in the system, a model of UPQC is developed in MATLAB/SIMULINK with a typical distribution network. In this research, UPQC is applied for power quality enhancement of Myaungtagar industrial distribution substation, Myanmar. Enhancements in power quality by UPQC are evaluated under maximum load condition.Keywords—Power Quality, UPQC, Series Controller, Shunt controller, Harmonics


2020 ◽  
Vol 4 (2) ◽  
pp. 321-326
Author(s):  
Akinlolu Olosunde ◽  
Rowland Benjamin Ekpo

Transformer failure is a major problem confronting the Nigerian power sector, hindering the transmission and distribution of electric power to various households, institutions, and industries. Many of these transformer developed problem due to the old age of the transformers, overloading, in-availability of technical expertise, poor maintenance culture, manufacturer's faults, just to mention few. The present research focuses on providing half exponential power model for the failure of already installed transformers, with respect to years of installation up to the time of the first failure, using secondary data from the south western part of Nigeria as a case study. The results obtained showed that half exponential power performed better in modeling the first time failure of power transformers. This was possible because of the present of shape parameter which gives flexibility to half exponential power when compared with a half normal distribution.


Author(s):  
Salvador Paes Ribeiro Junior ◽  
Ricardo Chagas Tolentino ◽  
Marcio Zamboti Fortes ◽  
Guilherme Gonçalves Sotelo

2015 ◽  
Vol 781 ◽  
pp. 272-275 ◽  
Author(s):  
Sarayuth Wetchakama ◽  
Uthane Supatti

This paper presents power quality analysis and impact of power solar rooftop on distribution system of the Provincial Electricity Authority (PEA) in Thailand. The case study used in this paper is a 996 kWpeak solar photovoltaic (PV) distribution generator (DG) system which connected to 22 kV at Pluak Daeng 3 substation in Pluak Daeng, Rayong, Thailand. Experiment and simulation are used in power quality analysis. The simulation is conducted through the DIgSILENT PowerFactory program to analyze the behavior of the DG system on the PEA power distribution. Experimental results show that all qualities of power from solar rooftop meet the PEA’s standard criteria while the simulation results show that over 4 MW of solar rooftop generation, the voltage of utility grid system would be affected during cloudy periods. However, if the PV system produces 2-3 MW of power, the distribution system would be benefit.


Sign in / Sign up

Export Citation Format

Share Document