scholarly journals Effect of cetane improver addition into diesel fuel: Methanol mixtures on performance and emissions at different injection pressures

2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 555-566 ◽  
Author(s):  
Feyyaz Candan ◽  
Murat Ciniviz ◽  
Ilker Ors

In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.

2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
İlker Örs ◽  
◽  
Murat Ciniviz ◽  
Bahar Sayin Kul ◽  
Ali Kahraman ◽  
...  

In this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodiesel-bioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque-speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake thermal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.


2011 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Wen Ming Cheng ◽  
Hui Xie ◽  
Gang Li

This paper discusses the brake specific fuel consumption and brake thermal efficiency of a diesel engine using cottonseed biodiesel blended with diesel fuel. A series of experiments were conducted for the various blends under varying load conditions at a speed of 1500 rpm and 2500 rpm and the results were compared with the neat diesel. From the results, it is found that the brake specific fuel consumption of cottonseed biodiesel is slightly higher than that of diesel fuel at different engine loads and speeds, with this increase being higher the higher the percentage of the biodiesel in the blend. And the brake thermal efficiency of cottonseed biodiesel is nearly similar to that of diesel fuel at different engine loads and speeds. From the investigation, it is concluded that cottonseed biodiesl can be directly used in diesel engines without any modifications, at least in small blending ratios.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


2018 ◽  
Vol 3 (2) ◽  
pp. 98-105
Author(s):  
Didit Sumardiyanto ◽  
Sri Endah Susilowati

AbstrakPenelitian ini dilakukan untuk mengetahui  pengaruh  pompa injeksi bahan bakar tekanan tinggi terhadap kinerja sebuah mesin pada mesin penggerak utama MV. ALAM JAYA II yang menggunakan mesin diesel YANMAR type M22-EN. Berdasarkan data-data yang diperoleh dilapangan, setelah dilakukan pembahasan bahwa tekanan pompa injeksi berpengaruh pada kinerja mesin diesel. Untuk tekanan pompa injeksi sebesar 820 kgf/cm2, kinerja yang dihasilkan mesin adalah : Daya Indikator 1204 kgf/cm2, Daya Efektif 1016 kgf/cm2, Efisiensi Thermal Efektif 32,0% dan konsumsi bahan bakar spesifik sebesar 192 g/hp.h. Sedangkan setelah dilakukan perbaikan pompa injeksi, tekanan pompa menjadi 1120 kgf/cm2, kinerja yang dihasilkan oleh mesin adalah : Daya efektif 1399 hp, Daya Efektif 1195 hp, Efisiensi Thermal Efektif : 37.32%, dan Konsumsi Bahan Bakar Spesifik sebesar 165.7 g/hp.h Dengan adanya perbaikan pompa injeksi sehingga dapat menaikkan tekanan injeksi dari 880 kgf/cm2 menjadi 1120 kgf/cm2, maka kinerja mesin dapat ditingkatkan Kata kunci: mesin diesel,pompa injeksi, kinerja mesin AbstractThis research was conducted to determine the effect of high pressure fuel injection pump on the performance of a machine on the MV main drive engine. ALAM JAYA II which uses the YANMAR type M22-EN diesel engine. Based on the data obtained in the field, after discussion that the injection pump pressure affects the performance of the diesel engine. For injection pump pressure of 820 kgf /cm2, the engine performance is: Indicator Power 1204 kgf /cm2, Effective Power of 1016 kgf /cm2, Effective Thermal Efficiency of 32.0% and specific fuel consumption of 192 g / hp.h. Whereas after the injection pump repairs, the pump pressure becomes 1120 kgf / cm2, the performance produced by the engine is: Effective 1399 hp, Effective 1195 hp, Effective Thermal Efficiency: 37.32%, and Specific Fuel Consumption of 165.7 g / hp. H With the improvement of the injection pump so that it can increase the injection pressure from 880 kgf / cm2 to 1120 kgf /cm2, the engine performance can be improvedKeywords: diesel engine, injection pump, engine performance


Author(s):  
Gvidonas LABECKAS ◽  
Stasys SLAVINSKAS ◽  
Tomas MACKEVIČIUS

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on rapeseed methyl ester (B) and rapeseed methyl ester -butanol (Bu5, Bu10, Bu15) blends, at various loads and 2000 rpm engine speeds. The experimental tests were performed on a four-stroke, single-cylinder, air-cooled diesel engine FL511. The bench test results showed that the brake specific fuel consumption increased, when operating on biodiesel-butanol fuel blends compared to neat biodiesel. The maximum brake thermal efficiency sustained at the levels from 7.3% to 12.9% lower in comparison with neat biodiesel operating at low engine load. When the engine was running at maximum torque mode using biodiesel-butanol fuel blend Bu15 the total emissions of nitrogen oxides decreased. Thus, the greatest fossil fuel challenge related with the simultaneous reduction of both the NOx emissions and the smoke opacity (PM) could be reasonably solved by switching a diesel engine on totally renewable biodiesel-n-butanol biofuel blends.Keywords: diesel engine, rapeseed oil derived biodiesel, n-butanol, engine efficiency, brake specific fuel consumption, emissions, smoke opacity.


2021 ◽  
Vol 8 (2) ◽  
pp. 1374-1383
Author(s):  
P. Dinesha ◽  
Shiva Kumar ◽  
Marc A. Rosen

Meeting the emission norms specified by governing bodies is one of the major challenges faced by engine manufacturers, especially without sacrificing engine performance and fuel economy. Several methods and techniques are being used globally to reduce engine emissions. Even though emissions can be reduced, doing so usually entails a deterioration in performance. To address this problem, nanoadditives such as cerium oxide (CeO2) nanoparticles are used to reduce engine emissions while improving engine performance. However, some aspects of the application of these nanoadditives are still unknown. In light of that, three sizes of CeO2 nanoparticles (i.e., 10, 30, and 80 nm) and at a constant volume fraction of 80 ppm were added to a 20% blend of waste cooking oil biodiesel and diesel (B20). A single-cylinder diesel engine operating at a 1500 rpm speed and 180 bar fuel injection pressure was used to compare the performance and emission characteristics of the investigated fuel formulations. The results showed that the addition of CeO2 nanoparticles led to performance improvements by reducing brake specific fuel consumption. Moreover, the catalytic action of CeO2 nanoparticles on the hydrocarbons helped achieve effective combustion and reduce the emission of carbon monoxide, unburnt hydrocarbon, oxides of nitrogen, and soot. Interestingly, the size of the nanoadditive played an instrumental role in the improvements achieved, and the use of 30 nm-sized nanoparticles led to the most favorable performance and the lowest engine emissions. More specifically, the fuel formulation harboring 30 nm nanoceria reduced brake specific fuel consumption by 2.5%, NOx emission by 15.7%, and smoke opacity by 34.7%, compared to the additive-free B20. These findings could shed light on the action mechanism of fuel nanoadditives and are expected to pave the way for future research to develop more promising fuel nanoadditives for commercial applications.


2013 ◽  
Vol 860-863 ◽  
pp. 555-559
Author(s):  
Ze Fei Tan ◽  
Li Zhong Shen ◽  
De Cai Jin ◽  
Yang Wen Bin Ou

Using an atmosphere simulation test platform,the performance of a common rail diesel engine when the engine was fueled with diesel fuel (B0) and different blending ratio of biodiesel (B10, B20, B30).The results show that at the same altitude(81kPa), with the mixing ratio of biodiesel increases,the common rail diesel engine has higher brake specific fuel consumption and lower power,but it has lower smoke.The biodiesel has a litter influence on the brake specific fuel consumption and power of the common rail diesel engine. The power of B30 is reduced by 4.38% in comparison with B0 maximally. The brake specific fuel consumption of B30 is increased by 4.32% in comparison with B0 maximally. The smoke of B30 are reduced by 22.5%, 38.6%, 57.1% in comparison with B0 maximally.


2013 ◽  
Vol 860-863 ◽  
pp. 1685-1689
Author(s):  
Ze Fei Tan ◽  
Li Zhong Shen ◽  
De Cai Jin ◽  
Yang Wen Bin Ou

To study the effect of the biodiesel on the performance of the high pressure common rail diesel engine performance, a experiment is conducted about the high pressure common rail diesel engine uses diesel fuel and different blending ratio of biodiesels. The results show that with the rising of the altitude, the engine power and the brake specific fuel consumption reduce, exhaust gas temperature increases; At the same altitude, the engine fueled with different blending ratio of bio-diesel has higher brake specific fuel consumption in comparison with fueled engine, but it has lower power, with the increase in bio-diesel blending ratio, engine power, fuel consumption increase.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Sign in / Sign up

Export Citation Format

Share Document