scholarly journals Effect of swirl flow on the performance of parallel hub axial annular diffuser

Author(s):  
Hardial Singh ◽  
◽  
Arora B.B ◽  

In the present work, the parallel hub axial flow annular diffuser's performance characteristics with divergent casing varying between equivalent cone angle (10°, 15°, and 20°) with area ratio 3 have been evaluated computationally as well as experimentally. The performance of three diffusers were tested at different inlet swirl angles (from 0° to 25°) for swirling and non-swirling flow. Simulations have been carried out on a fully developed flow at Reynolds number 2.5×105. The results were analyzed based on the velocity profiles, static pressure recovery coefficient, and the total pressure loss coefficient. The result analysis shows that the inlet swirl flow improves the recovery of pressure and also delays the flow separation on the casing. Moreover,the findings also show that the best performance was achieved in equivalent cone angle 10° at the inlet swirl angle of 7.5° compared to other diffusers.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hardial Singh ◽  
B.B. Arora

Abstract In this paper, the effects of non-swirling and swirling flow on the performance of parallel hub axial annular diffuser has been investigated. The study was conducted on a fully developed swirling flow and non-swirling flow to predict the separation of the flow from the wall. Three different annular diffusers were used with casing wall angles of 3°, 6°, and 9°. Furthermore, various swirl angles (0–25°) at the inlet of diffusers have been investigated to analyze the performance across the length. It was found that parallel hub axial annular diffuser performance increases up to a certain length as the inlet swirl angle increases. However, the performance also improves as the diffuser area ratio (AR) increases. The performance is evaluated based on the static pressure recovery coefficient (Cp) and the total pressure loss coefficient (CTL). The highest possible pressure recovery is achieved by the 12° swirl angle with a casing angle of 6°.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hardial Singh ◽  
B.B. Arora

AbstractIn this paper, the effects of non-swirling and swirling flow on the performance of parallel hub axial annular diffuser has been investigated. The study was conducted on a fully developed swirling flow and non-swirling flow to predict the separation of the flow from the wall. Three different annular diffusers were used with casing wall angles of 3°, 6°, and 9°. Furthermore, various swirl angles (0–25°) at the inlet of diffusers have been investigated to analyze the performance across the length. It was found that parallel hub axial annular diffuser performance increases up to a certain length as the inlet swirl angle increases. However, the performance also improves as the diffuser area ratio (AR) increases. The performance is evaluated based on the static pressure recovery coefficient (Cp) and the total pressure loss coefficient (CTL). The highest possible pressure recovery is achieved by the 12° swirl angle with a casing angle of 6°.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hardial Singh ◽  
Bharat Bhushan Arora

Abstract An annular diffuser is a critical component of the turbomachinery, and its prime function is to reduce the flow velocity. The current work is carried to study the effect of four different geometrical designs of an annular diffuser using the ANSYS Fluent. The numerical simulations were carried out to examine the effect of fully developed turbulent swirling and non-swirling flow. The flow behavior of the annular diffuser is analyzed at Reynolds number 2.5 × 105. The simulated results reveal pressure recovery improvement at the casing wall with adequate swirl intensity at the diffuser inlet. Swirl intensity suppresses the flow separation on the casing and moves the flow from the hub wall to the casing wall of the annulus region. The results also show that the Equal Hub and Diverging Casing (EHDC) annular diffuser in comparison to other diffusers has a higher static pressure recovery (C p  = 0.76) and a lower total pressure loss coefficient of (C L  = 0.12) at a 17° swirl angle.


Author(s):  
G. K. Feldcamp ◽  
A. M. Birk

An experimental investigation into the overall influence of struts spanning a double divergent annular diffuser followed by a straight cored annular diffuser has been undertaken in order to determine the performance of various strut configurations over a wide range of inlet swirl conditions. Two strut profiles have been investigated in four and eight strut configurations. Results have shown that the presence of struts under no swirl conditions have a relatively small effect on the overall total pressure loss. Increasing the inlet swirl angle to 20° has shown that the struts are able to assist in recovery of the swirling flow such that the pressure recovery nearly approaches that without struts, despite increased total pressure losses. Performance at 40° swirl is highly dependent on strut profile; the higher thickness-to-chord ratio strut configurations show minimal decrease in pressure recovery compared to 20° swirl, while the lower thickness-to-chord ratio configurations experiences a significant decrease as the result of significant flow separation from the struts. The exit swirl number has been shown to correlate strongly with the strut profile shape, while the number of struts had only a secondary influence. The exit velocity profiles show significant distortions at 40° swirl, and as a result the ideal pressure recovery calculated from the inlet and exit profiles change with strut configuration at 40° swirl.


Author(s):  
D. J. Cerantola ◽  
A. M. Birk

Ring vanes were recognized as being beneficial for increasing pressure recovery and reducing stall in wide-angled diffusers. Augmentation devices can also reduce swirl-induced flow distortion. A three-point ring vane was inserted into a short annular diffuser with a length-to-inlet-height ratio of 14.5 and area ratio of 4. Numerical optimization studies were completed using the realizable k-ε turbulence model at zero and 12 deg inlet swirl that established a preferential location of the ring vane leading edge. Parametric computational fluid dynamics studies evaluated the influence of the dominant variables — overall length and angle — at 0 to 12 deg inlet swirl. Performance was dependent on the ability of the ring vane to reduce outer wall stall without swirl or the central toroidal recirculation zone with swirl and the ring vane wake. Shorter vanes angled towards the centre reduced back pressure with no swirl whereas longer outward-angled vanes were preferred with 12 deg swirl.


Author(s):  
G. K. Feldcamp ◽  
A. M. Birk

Cold flow experiments were conducted to study swirling flows in an annular diffuser with various strut configurations. Experimental results at 0°, 20°, and 40° of inlet swirl were obtained. Measured properties included detailed inlet and exit traverses using three and seven hole pressure probes, surface pressure taps on the diffuser wall, and surface flow visualization techniques. Evaluation of the diffuser and strut performance was based on pressure recovery, and detailed pressure distributions. The experimental results have been studied further using Reynolds Averaged Navier Stokes (RANS) based Computational Fluid Dynamics (CFD). These models are of modest size (less than four million volumes). Several turbulence models have been used to predict the performance of the annular diffuser with struts. Both high and low Reynolds number implementations of the turbulence models have been investigated. The results show that modest CFD models can be used with confidence to design these devices.


1979 ◽  
Vol 101 (3) ◽  
pp. 358-372 ◽  
Author(s):  
D. Japikse ◽  
R. Pampreen

A series of experimental tests and computational analyses are reported for two automotive gas turbine diffusers. The diffusers include an interstage and an exhaust diffuser plus collector. The diffuser models were tested at Reynolds numbers and inlet blockage levels characteristic of the engine operating conditions. A rig test of the interstage diffuser is also reported. Inlet swirl and Mach number were systematically varied in the model tests. Good recovery was found for each diffuser at zero swirl. Recovery degraded at high swirl for the interstage diffuser. The exhaust diffuser with a double discharge collector showed little sensitivity to inlet swirl. Flow visualization indicates that the interstage diffuser was separated at modest swirl levels, at least in the model test. Pressure recovery in the rig (with upstream rotor and downstream stator) was found to be greater than in the model test (using “clean” inlet conditions). Comparisons between measured wall pressures and calculations provide further basic insights.


Author(s):  
Alex Wright ◽  
Zhijun Lei ◽  
Ali Mahallati ◽  
Mark Cunningham ◽  
Julio Militzer

This paper presents a detailed experimental and computational investigation of the effects of scalloping on the mixing mechanisms of a scaled 12-lobe turbofan mixer. Scalloping was achieved by eliminating approximately 70% of the lobe sidewall area. Measurements were made downstream of the mixer in a co-annular wind tunnel and the simulations were carried out using an unstructured RANS solver, Numeca FINE/Hexa, with k-ω SST model. In the core flow, the swirl angle was varied from 0° to 30°. At high swirl angles, a three-dimensional separation bubble was formed on the lobe’s suction surface penetration region and resulted in the generation of a vortex at the lobe valley. The valley vortex quickly dissipated downstream. Most of the swirl was removed by the lobes, but scalloping allowed residual swirl to persist downstream of the mixer. The interaction of the swirling flow and the vortices resulted in improved mixing rates for the scalloped mixer. Inlet swirl up to 10° provided improved mixing rates, reduced pressure loss and thrust loss for both mixers. High inlet swirl resulted in improved mixing but produced higher pressure and thrust losses as compared to the zero swirl case. At high swirl, the scalloped mixer resulted in better mixing and lower pressure losses than the unscalloped mixer, but at the expense of reduced thrust.


1979 ◽  
Vol 101 (2) ◽  
pp. 224-229 ◽  
Author(s):  
R. P. Lohmann ◽  
S. J. Markowski ◽  
E. T. Brookman

The performance of a series of diffusers of various lengths, area ratios and cant angles was determined experimentally over a range of inlet flow swirl angles between axial and 48 degrees. The results indicate that increases in the inlet swirl angle and the cant angle, particularly in combination, lead to increased distortion of the meridional velocity profile at the diffuser exit. With a swirling throughflow separation occurs at the inner wall and is encountered at progressively lower area ratios as the inlet swirl angle is increased. The tangential component of the flow is relatively independent of the meridional flow in that the angular momentum is essentially conserved and a high degree of similarity is found in these profiles at the diffuser exit.


2015 ◽  
Vol 72 (4) ◽  
Author(s):  
Mohamad Shaiful Ashrul Ishak ◽  
Mohammad Nazri Mohd. Jaafar ◽  
Wan Zaidi Wan Omar

The main purpose of this paper is to evaluate the production of CO-NO-HC emissions while varying the swirl angle of curve vane radial swirler. Swirling flow generates central recirculation region (CRZ) which is necessary for flame stability and enhances fuel air mixing. Therefore designing an appropriate air swirler is a challenge to produce stable, efficient and low emission combustion inside burner system. Four radial curved vane swirlers with 30o, 40o, 50o and 60o vane angles corresponding to swirl numbers of 0.366, 0.630, 0.978 and 1.427 respectively were used in this experiment to measure the vane angles effect on emission production in the combustion chamber. Emission measurements were conducted at 5 axial distances from the burner throat, and at 5 locations along the radius starting the central axis at each section. It was found that at the core near the throat, CO and HC concentrations are low due to high available O2 and high fuel mixing rate producing efficient combustion. This is due to the high shear region created the high swirl flow.


Sign in / Sign up

Export Citation Format

Share Document