scholarly journals Durability studies on ready mix concrete using mineral admixtures and manufactured sand

Author(s):  
Jagadish Vengala ◽  
◽  
K Ramesh ◽  
Manjunath M ◽  
Manish S Dharek ◽  
...  

To meet the intensifying demand of fine aggregate in construction sector, manufactured sand has become a viable alternative to the river sand. Ready mix concrete (RMC) is playing vital role in fast-track construction particularly in Tire-II cities in India. The strength and durability concerns about using 100% manufactured sand along with mineral admixtures in RMC plant needs to be addressed through suitable experimental demonstrations. This research gives the experimental results on strength and durability studies of concrete carried out on samples obtained from RMC Plant by making use of manufactured sand containing (50% of crushed sand and 50% of the crushed rock fines) as replacement for natural sand. Trials on partial replacing cement with fly ash content of 33% and GGBS of 40% has also been carried out. Compressive and split-tensile strength studies were conducted on cubes (150mmx150mmx150mm) and cylinders (150mmx300mm) at 7, 14 & 28 days of curing. Non-Destructive tests such as Ultra Sonic Pulse Velocity (UPV) and rebound hammer tests were conducted to assess the quality of these mixes. Durability tests were conducted and comparison of the % of loss in mass and % of loss in strength for concrete samples subjected to acid attack, sulphate attack, alkaline attack tests were also carried out. Rapid chloride permeability test (RCPT) was conducted to check the concrete resistance against chloride ions penetration. The experimental results revealed that the use of 100% manufactured sand along with mineral admixtures in producing ready mix concrete is a good choice in view of the non-availability of river sand to meet the demands of fast-track construction projects.

2021 ◽  
Vol 13 (8) ◽  
pp. 4169
Author(s):  
Congtao Sun ◽  
Ming Sun ◽  
Tao Tao ◽  
Feng Qu ◽  
Gongxun Wang ◽  
...  

Chloride binding capacity and its effect on the microstructure of mortar made with marine sand (MS), washed MS (WMS) and river sand (RS) were investigated in this study. The chloride contents, hydration products, micromorphology and pore structures of mortars were analyzed. The results showed that there was a diffusion trend for chloride ions from the surface of fine aggregate to cement hydrated products. During the whole curing period, the free chloride content in the mortars made by MS and WMS increased firstly, then decreased and stabilized finally with time. However, the total chloride content of three types of mortar hardly changed. The bound chloride content in the mortars made by MS and WMS slightly increased with time, and the bound chloride content included the MS, the WMS and the RS arranged from high to low. C3A·CaCl2·10H2O (Friedel’s salt) was formed at the early age and existed throughout the curing period. Moreover, the volume of fine capillary pore with a size of 10–100 nm increased in the MS and WMS mortar.


Concrete is a globally utilized material in the construction field. In the last few decades, Concrete consumption has become multifold and usage has enhanced in massive scale due to the rapid growth of infra sector. Generally, Concrete consists of cement, aggregate, and water; these ingredients become more expensive day by day and additionally hard to please and is increasing widely. During the process of making Ordinary Portland Cement(OPC) produces a large amount of greenhouse gases and the environment being polluted. To minimize the cement utilization and environmental issues is essential to switch the cement by another alternate materials such as pozzolanas. The various number of pozzolanic materials comes from industrial wastes are Groundz Granulatedz Blastz furnacez Slagz (GGBS), xFlyqAsh (FA), zSilicazFume (SF), Metakaolin (MK) etc are utilized in concrete. Similarly, the availability of river sand is getting drained furthermore it turns out troublesome. In order to avoid this problem river sand is alter by zManufacturedkSand (M Sand). An attempt is made in the present investigation to study on properties of fiber reinforced concrete (qsteelu fibers @ 1% of binder) of M40 grade made with OPC, GGBS, MK and manufactured sand. In this study, OPC is replaced by GGBS and MK in different proportions. By casting requisite number of cubes, cylinders then zMechanical properties are determined such as fCompressivekstrength,sSplitdtensile strength tests and durability properties are determined by conducting Water absorption and Sorptivity tests. Test results are compared between controlled concrete and innovative concrete of M40 grade.It is observed that 30%(15%GGBS,15%MK) replacement is optimum for strength and durability criteria.


2016 ◽  
Vol 35 (3) ◽  
pp. 159 ◽  
Author(s):  
Huan He ◽  
Luc Courard ◽  
Eric Pirard ◽  
Frederic Michel

Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.


The river sand is the natural sort of fine aggregate material which is employed within the concrete and mortar. It’s usually obtained from the river bed and mining has disastrous environment consequences. Rather than the river sand we are using M-sand as fine aggregate within the concrete. The event of acrylic concrete marks a crucial milestone in improving the merchandise quality and efficiency of the concrete. Usage of acrylic within the concrete will increase the strength and durability of the concrete. It enhances the performance of the concrete and increase energy absorption compared with plain concrete. Within the present work we are getting to analysis the strength properties of fiber reinforced M-sand concrete like compressive strength, flexural strength, split tensile strength, and bond strength.


2015 ◽  
Vol 1115 ◽  
pp. 160-165
Author(s):  
Maisarah Ali ◽  
Muhammad Hariz Nordin ◽  
Siti Asmahani Saad

Concrete is a common material that widely used in construction industry. Excessive usage of this material causes exhaustibility to its components, especially fine aggregate or sand. In this regard, the use of manufactured sand is considered as a part of the solutions to fix this problem as it is readily available. In this research, the manufactured sand is used at 40%, 50% and 60% to replace natural river sand. SEM analysis reveals the rough surface texture of manufactured sand. The manufactured sand has angular shape and sieve analysis reveled that it has a considerable amount of fine particle. Slump test shows that concrete using manufactured sand pass the standard. On the other hand, compressive test shows that concrete cubes using manufactured sand do not achieved the target strength. Water absorptive test on the cubes revealed that M-Sand I has higher absorptivity property compared to river sand . SEM analysis revealed the existance of microcrack as well as porosity in in concrete cubes incorporating of manufactured sand. It can be concluded that it can be concluded that the higher the percentage of manufactured sand in the concrete mix the lower is the comprensive strength.


2021 ◽  
Vol 309 ◽  
pp. 01114
Author(s):  
K. Veera Babu ◽  
T. Srinivas ◽  
Mahathi Tummala

Concrete is the most adaptable, long-lasting, and dependable construction material on the planet. There are numerous environmental concerns associated with the production of OPC, and natural sand is becoming more expensive and scarce as a result of unlawful river sand dredging. The greatest replacement material for traditional concrete is geopolymer concrete with low calcium fly ash. The purpose of this paper is to investigate the mechanical properties of geopolymer concrete of grades G30 and G50, which are equivalent to M30 and M50, when river sand is substituted in various quantities with manufactured sand, such as 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. When compared to the equivalent grades of controlled concrete, geopolymer concrete improves mechanical properties such as compressive, tensile, and flexural strengths.


Abstract. Continuous extraction of sand is having a huge impact on the natural river beds which has resulted in lowering of water table and a decrease in the amount of sediment supply. Despite the quantity of sand used in our day-to-day activities, our dependence on sand is significantly increasing. The use of manufactured sand as a fine aggregate in concrete draws the attention of many investigators and researchers. The present investigation includes the study of soundness and EDAX .The test results depicted that for M-sand substituted concrete the loss of weight, when subjected to alternate cycles of freezing and thawing when tested with magnesium and sodium sulphate solution was found to be less when compared with natural sand. The important observation is that the inclusion of manufactured sand in concrete reduces the pores present in concrete resulting in matrix densification and makes the concrete impermeable and substantially reduces the rate of oxygen diffusion and reduces the corrosion process as well. This paper also focuses on the effect of manufactured sand as a fine aggregate in the elastic and bond characteristics of concrete.


Author(s):  
Sangavi D ◽  
Angu Senthil K

A Rise in urbanization and industrialization has led to over utilization of natural river sand, which affects environmental sustainability. Nowadays, due to the massive demand of river sand, M-sand has been replaced effectively and being used in the construction industry. Although M-Sand is desirably used, it can lead to more water and cement requirement to achieve the expected workability which in turn increases the cost of construction. Thus as an alternative solution, industrial by-product like waste foundry sand can be used. When sand can no-longer be reused in the foundry, it is known as waste foundry sand. As it is discarded in a landfill, it tends to pose several environmental impacts. In order to reduce the disposal problem, waste foundry sand is reused in engineering applications. In this paper, various strength and durability properties have been studied, and an overview of some of the research works on the utilization of waste foundry sand in concrete were given. Fine aggregate is replaced with different proportions of waste foundry sand (0-100%). From the results obtained, the optimum % replacement of foundry sand is found to be in the range of 20% to 40% based on the grade of concrete.


Sign in / Sign up

Export Citation Format

Share Document