The impact of technology on architecture in Iran with focus on saving in energy consumption

2015 ◽  
Vol 16 (SE) ◽  
pp. 97-103
Author(s):  
Allah Bakhsh Kavoosi ◽  
Shahin Heidari ◽  
Hamed Mazaherian

Growth and development of technology caused enormous transformation and change in the world after Industrial Revolution. The contemporary human has prepared the platform for their realization in many activities that the humans were unable to do it in the past time and struck the dream of their realization in their mind so that today doing many of those activities have been apparently practical by human. This accelerating growth accompanied with consuming a lot of energy where with respect to restriction of the given existing resources, it created energy crises. On the other hand, along with growth in industry and requirement for manpower and immigration from village to city and basic architectural changes in houses, which have emerged due to change in social structure it has led to change in lifestyle and type and quantity of consuming energy in contemporary architecture. Inter alia, with increase in human’s capability, cooling and heating and acoustic and lighting technologies were also changed in architecture and using mechanical system was replaced by traditional systems. Application of modern systems, which resulted from growth of industry and development of technology and it unfortunately, caused further manipulation in nature and destruction of it by human in addition to improving capability and potential of human’s creativity. With respect to growth of population and further need for housing and tendency to the dependent heating and cooling systems to them in this article we may notice that the housing is assumed as the greatest consumer of energy to create balance among the exterior and interior spaces in line with creating welfare conditions for heating and cooling and lighting. The tables of energy demand prediction in Iran show that these costs and energy consumption will be dubbed with energy control smart management in architecture.

2021 ◽  
Author(s):  
Melissa Ann Furukawa

The impact of green roof retrofits on the local microclimate and energy consumption of a building is investigated. This research is based on a case study of Kerr Hall located on the Ryerson University campus in Toronto. The software ENVI-met is used to simulate the microclimate while EnergyPlus is used for the building energy analysis. Results indicate that increasing the leaf area index (LAI) of the green roof leads to increased cooling effect up to 0.4 degrees C during the day at pedestrian-level; however, more significant cooling is attained at the rooftop-level. The addition of the green roof reduced both the heating and cooling demands and improved indoor comfort levels. Energy demand reductions up to 3% were obtained with the green roof retrofits with the biggest contribution form from reduction in heating on the top floor. Increasing the soil depth had a larger impact on the energy consumption compared to increasing the LAI.


2021 ◽  
Author(s):  
Melissa Ann Furukawa

The impact of green roof retrofits on the local microclimate and energy consumption of a building is investigated. This research is based on a case study of Kerr Hall located on the Ryerson University campus in Toronto. The software ENVI-met is used to simulate the microclimate while EnergyPlus is used for the building energy analysis. Results indicate that increasing the leaf area index (LAI) of the green roof leads to increased cooling effect up to 0.4 degrees C during the day at pedestrian-level; however, more significant cooling is attained at the rooftop-level. The addition of the green roof reduced both the heating and cooling demands and improved indoor comfort levels. Energy demand reductions up to 3% were obtained with the green roof retrofits with the biggest contribution form from reduction in heating on the top floor. Increasing the soil depth had a larger impact on the energy consumption compared to increasing the LAI.


2021 ◽  
Vol 11 (1) ◽  
pp. 08-19
Author(s):  
Maureen de Gastines ◽  
◽  
Andrea Pattini

Glazing is one of the dominant features of modern and contemporary architecture. This envelope design may have a great impact on operational energy demand of buildings. In this work, glazed façade systems available in Argentina are analyzed, with the purpose of determining the associated thermal transmittance ranges, in terms of the profiles’ design, the type of glazing and the size of glass panes. First, by using bidimensional numerical calculation, the impact of several profile design parameters on thermal transmittance is studied, highlighting the relevance of glazing fixing methods, to then calculate the thermal transmittance of the entire facade. The results indicate that the thermal transmittance value of glazed facades, mainly depends on the transmittance of the glass used, and exceeds this by 24% on average.


Author(s):  
Bahman Zohuri

Abstract: The human race has always innovated, and in a relatively short time went from building fires and making stone-tipped arrows to creating smartphone apps and autonomous robots. Today, technological progress will undoubtedly continue to change the way we work, live, and survive in the coming decades. Since the beginning of the new millennium, the world has witnessed the emergence of social media, smartphones, self-driving cars, and autonomous flying vehicles. There have also been huge leaps in energy storage, artificial intelligence, and medical science. We are facing immense challenges in global warming and food security, among many other issues. While human innovation has contributed to many of the problems we are facing, it is also human innovation and ingenuity that can help humanity deal with these issues “New directions in science are launched by new tools much more often than by new concepts. The effect of a concept-driven revolution is to explain old things in new ways. The effect of a tool-driven revolution is to discover new things that have to be explained”. (F. Dyson, 1997 In this article, we review the impact of technology as evolving at beginning of 21st Century on future prospect of Energy demand either renewable or non-renewable form, Economy, to Ecommerce, Education and any other E-related of Modern Technology.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4805
Author(s):  
Shu Chen ◽  
Zhengen Ren ◽  
Zhi Tang ◽  
Xianrong Zhuo

Globally, buildings account for nearly 40% of the total primary energy consumption and are responsible for 20% of the total greenhouse gas emissions. Energy consumption in buildings is increasing with the increasing world population and improving standards of living. Current global warming conditions will inevitably impact building energy consumption. To address this issue, this report conducted a comprehensive study of the impact of climate change on residential building energy consumption. Using the methodology of morphing, the weather files were constructed based on the typical meteorological year (TMY) data and predicted data generated from eight typical global climate models (GCMs) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) from 2020 to 2100. It was found that the most severe situation would occur in scenario RCP8.5, where the increase in temperature will reach 4.5 °C in eastern Australia from 2080–2099, which is 1 °C higher than that in other climate zones. With the construction of predicted weather files in 83 climate zones all across Australia, ten climate zones (cities)—ranging from heating-dominated to cooling-dominated regions—were selected as representative climate zones to illustrate the impact of climate change on heating and cooling energy consumption. The quantitative change in the energy requirements for space heating and cooling, along with the star rating, was simulated for two representative detached houses using the AccuRate software. It could be concluded that the RCP scenarios significantly affect the energy loads, which is consistent with changes in the ambient temperature. The heating load decreases for all climate zones, while the cooling load increases. Most regions in Australia will increase their energy consumption due to rising temperatures; however, the energy requirements of Adelaide and Perth would not change significantly, where the space heating and cooling loads are balanced due to decreasing heating and increasing cooling costs in most scenarios. The energy load in bigger houses will change more than that in smaller houses. Furthermore, Brisbane is the most sensitive region in terms of relative space energy changes, and Townsville appears to be the most sensitive area in terms of star rating change in this study. The impact of climate change on space building energy consumption in different climate zones should be considered in future design strategies due to the decades-long lifespans of Australian residential houses.


2020 ◽  
Vol 12 (16) ◽  
pp. 6563
Author(s):  
Roque G Stagnitta ◽  
Matteo V Rocco ◽  
Emanuela Colombo

Energy balances have been historically conceived based on a supply-side perspective, providing neither detailed information about energy conversion into useful services nor the effects that may be induced by the application of policies in other sectors to energy consumption. This article proposes an approach to a thorough assessment of the impact of efficiency policies on final energy uses, focusing on residential space heating and cooling, and capable of: (1) quantifying final useful services provided and (2) accounting for the global impact of efficiency policies on final energy use, taking advantage of Input–Output analysis. This approach is applied in five cities of Argentina. Firstly, the quantity of energy service provided (i.e., level of thermal comfort) for each city is evaluated and compared with the defined target. It is found out that heating comfort is guaranteed approximately as established, whereas in the cooling case the provision is twice the established level. Secondly, primary energy consumption of heating and cooling services is evaluated before and after different efficiency improvement policies. The results show that the major primary energy saving (52%) is obtained from the upgrading appliances scenario and reflect the importance of accounting for embodied energy in goods and services involved in interventions.


2020 ◽  
Vol 62 (2) ◽  
pp. 5-11
Author(s):  
Tyrone S. Pitsis ◽  
Sara L. Beckman ◽  
Martin Steinert ◽  
Luciano Oviedo ◽  
Bettina Maisch

This is an introduction to the special issue of California Management Review on Design Thinking (DT). This special issue joins the growing body of work exploring the idea of DT and whether DT makes a difference in terms enhancing or augmenting the impact of technology—and, as a result, innovation—in a positive way. We have chosen an interesting, relevant, and useful array of papers that provide different approaches, views, and interpretations of applied design thinking. These articles provide both management and scholarly readers with insights in how DT is used, as well as its impact and usefulness in a variety of contexts.


2021 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Hassan Bazazzadeh ◽  
Adam Nadolny ◽  
Seyedeh Sara Hashemi Safaei

The growth of urban population as the result of economic and industrial development has changed our place of living from a prosperous place to where the resources are carelessly consumed. On the other hand, long-term climate change, i.e. global warming, has had adverse impact on our resources. Certain resources are on the verge of depletion as the consequence of climate change and inconsiderate consumption of resources, unless serious measures are implemented immediately. The building sector, whose share in the municipal energy consumption is considerably high, is a key player that may successfully solve the problem. This paper aims to study the effects of climate change on the energy consumption of buildings and analyze its magnitude to increase the awareness of how construction can reduce the overall global energy consumption. A descriptive-analytical method has been applied to analyze valid models of energy consumption according to different scenarios and to interpret the conditions underlying current and future energy consumption of buildings. The results clearly show that the energy consumption in the building sector increasingly depends on the cooling demand. With that being said, we can expect the reduction of overall energy consumption of buildings in regions with high heating demands, whereas rising the energy consumption in buildings is expected in regions with high cooling demand. To conclude, the long-term climate change (e.g. global warming) underlies the increased energy consumption for the cooling demand whose share in total energy consumption of buildings much outweighs the heating demand. Therefore, to conserve our resources, urban energy planning and management should focus on working up a proper framework of guidelines on how to mitigate the cooling loads in the energy consumption patterns of buildings.


Sign in / Sign up

Export Citation Format

Share Document