scholarly journals Soil Moisture, Temperature, and Oxidation-Reduction Potential Fluctuations across a Furrow-Irrigated Rice Field on a Silt-Loam Soil

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lunga Diego Della ◽  
Brye Kristofor R ◽  
Slayden Jordan M ◽  
Henry Christopher G ◽  
Wood Lisa S
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lunga Diego Della ◽  
Brye Kristofor R ◽  
Slayden Jordan M ◽  
Henry Christopher G

2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


Revista CERES ◽  
2016 ◽  
Vol 63 (2) ◽  
pp. 223-231
Author(s):  
Romano Roberto Valicheski ◽  
Suzi Mari Brandelero ◽  
David José Miquelutti ◽  
Sidnei Leandro K.Stürmer ◽  
Antonio Luis Tramonti ◽  
...  

ABSTRACT Soybean cultivation is increasing rapidly in the region of Alto Vale do Itajaí, State of Santa Catarina, where there is a predominance of silt soils. The objective of this work was to evaluate the content of primary macronutrients in shoots and shoot and root vegetative growth of soybean (Glicine max L. Merrill) grown in a silt-loam soil under different compactation densities and moisture levels. A randomized block design in a 4x4 factorial arrangement was used, with four compactation densities: 1.00; 1.20; 1.40 and 1.60 Mg m-3, and four soil moisture levels: 0.130; 0.160; 0.190 and 0.220 kg kg-1 and four replications. Each pot consisted of the overlapping of three 150-mm PVC rings, where soil was maintained in the higher and lower part of the pot with a density of 1.00 Mg m-3 and in the intermediate ring, the compactation densities were increased. Values of soil density higher than 120 Mg m-3 negatively affected N, P and K uptake by soybean plants, as well as the plant mass of the shoots and roots. The higher levels of soil moisture reduced the compaction effect and promoted better absorption of P and K.


2011 ◽  
Vol 21 (4) ◽  
pp. 466-473 ◽  
Author(s):  
Timothy Coolong ◽  
Susmitha Surendran ◽  
Richard Warner

Soil moisture-based, high-frequency, low-volume (pulsed) irrigation management strategies have saved water while maintaining yields of vegetables grown in coarse textured soils. However, little is known regarding the efficacy of soil moisture-based pulsed irrigation on finer textured soils. Therefore, five tensiometer-based, automated irrigation treatments were tested for tomato (Solanum lycopersicum) grown in a Maury silt loam soil in 2009 and 2010 in Lexington, KY. Irrigation treatments consisted of paired-tensiometer systems with on/off setpoints of −30/−10, −30/−25, −45/−10, and −45/40 kPa in both 2009 and 2010 and a single-tensiometer system with setpoints of −35 kPa in 2009 and −40 kPa in 2010. In 2009, the pulsed systems (−30/−25, −45/−40, and −35 kPa) irrigated more frequently but for a shorter duration than non-pulsed systems (−30/−10 and −45/−10 kPa). Soil moisture measurements in 2009 suggested that probes set at a depth of 6 inches were more closely matched to irrigation setpoints than those at 12 inches. In both years, the −45/−40 kPa setpoint treatment used the least amount of water while maintaining total marketable yields that were not significantly different from other treatments. Yields were significantly higher in 2009 than 2010, though atypical air temperatures in 2010 may have been the cause. Leaf water potential and relative water content were measured predawn and midday throughout the growing season in 2009 and 2010. Leaf water potential was not significantly affected by the treatments in either year, though leaf relative water content was affected in 2010. In this trial, an automated, soil moisture-based irrigation system maintained yields and saved water when compared with a non-pulsed irrigation system using similar irrigation setpoints for tomato grown in a silt loam soil.


Weed Science ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 381-384 ◽  
Author(s):  
W. F. Ritter ◽  
H. P. Johnson ◽  
W. G. Lovely

The effect of soil temperature, soil moisture content, and soil bulk density on the diffusion of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], propachlor (2-chloro-N-isopropylacetanilide), and diazinon [O,O-diethylO-(2-isopropyl-6-methyl-4-pyrimidinyl) phosphorothioate] in Ida silt loam soil was studied in the laboratory. Diffusion coefficients of 1.90, 1.36, and 0.63 mm2/day at 27 C for propachlor, atrazine, and diazinon, respectively, show in a relative way the expected movement of these chemicals in Ida silt loam soil. The greatest amount of movement occurred with high temperatures and high moisture contents. Soil moisture had more effect on atrazine movement than on propachlor movement, and very little effect on diazinon movement. Movement for all chemicals decreased with an increase in bulk density.


2021 ◽  
Author(s):  
Haichao Li ◽  
Jan Van den Bulcke ◽  
Orly Mendoza ◽  
Heleen Deroo ◽  
Geert Haesaert ◽  
...  

<p>Soil organic carbon (OC) levels generally increase with increasing clay and silt content under a similar climatic zone because of increased association of OC to clay minerals and stronger occlusion inside aggregates. Surprisingly though, in Western Europe many silt loam soils actually bear low topsoil OC levels compared to lighter textured soils. Soil texture obviously also strongly controls moisture availability with consequent indirect impact on heterotrophic activity. We hypothesized that with increasingly frequent summer drought: 1) soil microbial activity in sandy soils is more likely impeded due to their limited water holding capacity retention during droughts, while soil OC mineralization in silty soils remain be less drought-limited; 2) capillary rise from sufficiently shallow groundwater would, on the other hand, alleviate the water stress in lighter textures. To test these hypotheses, we established a one-year field trial with manipulation of soil texture, monitoring of soil moisture and maize-C decomposition via <sup>13/12</sup>C-CO<sub>2</sub> emissions. The upper 0.5 m soil layer was replaced by sand, sandy loam and silt loam soil with low soil OC. Another sandy soil treatment with a gravel layer was also included beneath the sand layer to exclude capillary rise. Soil texture did not affect maize-C mineralization (C<sub>maize</sub>-min) until April 2019 and thereafter C<sub>maize</sub>-min rates were higher in the silt loam than in the sandy soils (P=0.01). θ<sub>v</sub> correlated positively with the C<sub>maize</sub>-min rate for the sand-textured soils only but not for the finer textures. These results clearly highlight that soil texture controlled C<sub>maize</sub>-min indirectly through regulating moisture under the field conditions starting from about May, when soils faced a period of drought. By the end of the experiment, more added C<sub>maize</sub> was mineralized in the silt loam soil (81%) (P<0.05) than in the sandy soil (56%). Capillary rise did not result in a significant increase in cumulative C<sub>maize</sub>-min in the sandy soil, seemingly because the capillary fringe did not reach the sandy topsoil layer. These results imply that, under future climate scenarios the frequency of drought is expected to increase, the largely unimpeded microbial activity in silty soils might lead to a further stronger difference in soil OC with coarser textured soils under similar management.</p>


1969 ◽  
Vol 49 (2) ◽  
pp. 211-218
Author(s):  
R. T. Heywood ◽  
Trevor Stevens ◽  
L. R. Webber

Field and laboratory trials were used in attempts to relate soil moisture tension and the efficiency of a silt loam soil to oxidize the organic material in cannery corn waste. The organic loading in the waste was expressed as chemical oxygen demand (COD). Evidence was obtained to indicate that the back fill over the field tiles had not settled adequately and the waste was not retained long enough by the soil to facilitate oxidation. With laboratory trials using the miscible displacement technique, 97% of the COD was removed at soil moisture tensions of 45 and 100 cm of water.


Sign in / Sign up

Export Citation Format

Share Document