Biogas production from hydrolyzed sugar beet pulp and from top and tails

2020 ◽  
pp. 427-430
Author(s):  
Birger Langebeck ◽  
Charlotte Pipper ◽  
Jesper Jeppesen

In accordance with Nordzucker’s energy policy, Nordzucker has launched two projects to exploit the energy potential in side streams from sugar production: 1 Enhanced biogas production from anaerobic wastewater treatment with enzymatically hydrolyzed sugar beet pulp 2 Biogas production from tops and tails Before the two projects were started, the biogas potential in beet pulp and tops and tails was tested at Teknologisk Institut, Aarhus, Denmark. The biogas potential in both beet pulp and tops and tails was almost at the same level namely 324 and 313m3 (S.T.P.) CH4/t VSS (volatile suspended solids) respectively. The test also showed that app. 90% of the biogas was realized after app. 9 days. After 35 days, the degradation was completed.

2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


2020 ◽  
Vol 164 ◽  
pp. 107770
Author(s):  
M. Pessoa ◽  
M.A. Motta Sobrinho ◽  
M. Kraume

2019 ◽  
Vol 9 (9) ◽  
pp. 1791 ◽  
Author(s):  
Xiomara Gómez-Quiroga ◽  
Kaoutar Aboudi ◽  
Carlos José Álvarez-Gallego ◽  
Luis Isidoro Romero-García

In this paper, the viability of thermophilic anaerobic co-digestion of exhausted sugar beet pulp (ESBP) and pig manure (PM) was evaluated. The effect of the proportion of ESBP on biogas production was investigated by using a series of lab-scale batch assays, in duplicates. The following five ESBP:PM mixture ratios were studied: 0:100, 10:90, 25:75, 50:50, and 100:0. The highest cumulative methane production (212.4 mL CH4/g VSadded) was reached for the mixture 25:75. The experimental results showed that the increase in the proportion of ESBP in the mixture led to the distortion of the process, due to acidification by the volatile fatty acids generated. Acetic acid was the predominant acid in all the cases, representing more than 78% of the total acidity. Moreover, the results obtained by operating at thermophilic temperatures have been compared with those obtained in a previous study conducted at mesophilic temperatures. The results have shown that in the individual digestion of ESBP, the activity of acetoclastic methanogens was affected in both temperatures, but especially in thermophilic conditions. Thus, the methane produced in the individual thermophilic digestion of ESBP came almost entirely from the activity of hydrogen-utilizing methanogenic archaea.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3222 ◽  
Author(s):  
Cieciura-Włoch ◽  
Binczarski ◽  
Tomaszewska ◽  
Borowski ◽  
Domański ◽  
...  

This study investigates a simultaneous processing of sugar beet pulp (SBP) for furfural, hydrogen and methane production using various pretreatment methods. In the experiments, sugar beet pulp was first subjected to thermal and thermochemical pretreatment at 140 °C. Then hydrolysates from these operations were investigated for their potential for methane and hydrogen production in batch tests. The experiments showed that thermal pretreatment of SBP resulted in the highest biogas and methane yields of 945 dm3/kg volatile solids (VS) and 374 dm3 CH4/kg VS, respectively, and a moderate hydrogen production of 113 dm3 H2/kg VS, which corresponded to a calculated energy production of 142 kWh/t; however, only low amount of furfural was obtained (1.63 g/L). Conversely, the highest furfural yield of 12 g/L was achieved via thermochemical pretreatment of SBP; however, biogas production from hydrolysate was much lower (215 dm3/kg VS) and contained only 67 dm3/kg VS of hydrogen. Meanwhile, in the experiment with lower amounts of sulfuric acid (2%) used for pretreatment, a moderate furfural production of 4 g/L was achieved with as high as 220 dm3/kg VS of hydrogen and the corresponding energy yield of 75 kWh/t.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 175
Author(s):  
Michał Ptak ◽  
Agnieszka Skowrońska ◽  
Hanna Pińkowska ◽  
Małgorzata Krzywonos

The primary objective of this paper is to identify the possibilities of using sugar beet pulp as feedstock to produce a variety of added-value products. Such an application of the sugar production byproducts contributes to implementing circular bio-economy, which is a source of many economic, social, and environmental benefits. Specific objectives of this paper are: (1) Presenting the concept and meaning of circular bio-economy. (2) Characterizing properties of the sugar beet pulp from the perspective of using them as feedstock. (3) Determining the volume of production of the sugar beet pulp and the current methods of using them. (4) Determining the methods of obtaining attractive bioproducts and renewable energy from sugar beet pulp. Special attention was given to the amount of sugar beet pulp produced in Polish sugar refineries. Poland is among the European countries in which the volume of produced sugar is especially high. Therefore, the problem of appropriate waste management in the Polish sugar industry gains significant importance. The conducted literature review demonstrated that sugar beet pulp might be used as a feedstock in the production of many bio-products produced using a variety of methods.


2019 ◽  
Vol 112 ◽  
pp. 03023
Author(s):  
Elena Mihaela Nagy ◽  
Constantin Coţa ◽  
Nicolae Cioica ◽  
Zoltan Gyorgy ◽  
Teodora Deac

The sugar beet pulp from the sugar production is, thanks to the easily assimilable carbohydrate content, an important source of feed, especially for polygastric animals. Its efficiency in terms of assimilation and biological effect can be substantially improved by the addition of macroelements (Ca, Mg, P) and microelements (Zn, Co, Fe, Mn, Cu). These elements react with the sugar beet pulp compounds to form specific chelates. In order to preserve and maintain the nutritional value of the premix, the realization process involves a drying operation. In view of this, experiments have been carried out to determine the maximum moisture content that ensures preservation and optimum drying conditions. This paper presents how the percentage of micro-and macro-elements used and the drying temperature influence the drying speed of the premix


Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


Sign in / Sign up

Export Citation Format

Share Document