scholarly journals RESEARCH OF THE TECHNOLOGY OF OPENING HOLES IN COMPACT AND POWDER MATERIALS

2021 ◽  
Vol 05 (01) ◽  
pp. 51
Author(s):  
Heybet Eldarzade ◽  
Aghali Quliyev ◽  
Aynur Sherifova ◽  
Rafiqa Shahmarova ◽  
Tamilla Xankishiyeva

This article is devoted to one of the important problems of mechanical engineering, including processing by cutting and deploying in sintered antifriction powder material in optimal modes with maximum performance. The study was conducted for small diameter cylindrical bushings. Processing of bushings was carried out by reamers from high-speed and carbide tools on materials from porous powder and cast iron. It is established that the temperature of the tools should not exceed the permissible upper limits, for pressing the bushings, it is necessary to use planting with small strains in the cold state. Keywords: engine valve, bushing, powder material, cast iron, reamer, cold pressing.

2020 ◽  
Vol 15 (4) ◽  
pp. 33-40
Author(s):  
Hong Zhi Cui ◽  
Angelica A. Grigoryevskaya ◽  
Pavel Yu. Gulyaev

The article shows examples of visualization of the process of heat transfer by radiation in unstable combustion modes of porous powder materials, which are in good agreement with the results of high-speed video recording and micropyrometry. The mathematical model and the results of calculating the structure of the combustion wave in the Ni-Al system are presented. The contribution of radiative heat transfer at an adiabatic combustion temperature in the range of 810 % and the effect of its trigger shutdown with decreasing temperature were revealed.


Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


1995 ◽  
Vol 81 (9) ◽  
pp. 912-917 ◽  
Author(s):  
Keisaku OGI ◽  
Yukinori ONO ◽  
Hong ZHOU ◽  
Hirofumi MIYAHARA
Keyword(s):  

Alloy Digest ◽  
1980 ◽  
Vol 29 (8) ◽  

Abstract RED CUT COBALT steel is made by adding 5% cobalt to the conventional 18% tungsten -4% chromium-1% vanadium high-speed steel. Cobalt increases hot or red hardness and thus enables the tool to maintain a higher hardness at elevated temperatures. This steel is best adapted for hogging cuts or where the temperature of the cutting point of the tool in increased greatly. It is well adapted for tools to be used for reaming cast-iron engine cylinders, turning alloy steel or cast iron and cutting nonferrous alloys at high speeds. This datasheet provides information on composition, physical properties, and hardness as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-367. Producer or source: Teledyne Vasco.


Author(s):  
E. Yu. Gerashchenkova ◽  
T. I. Bobkova ◽  
E. A. Samodelkin ◽  
B. V. Farmakovsky

The paper presents results of the development of technology for producing cladded and surfacealloyed powder materials. High-speed mechanosynthesis of matrix powders of FeCrAl and solid nanosized particles of tungsten carbide occurs in a disintegrator in the presence of an active gas phase (nitrogen).


2017 ◽  
Vol 902 ◽  
pp. 60-64
Author(s):  
Judith Alejandra Velázquez Perez ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Elia Mercedes Alonso Guzmán ◽  
Rosalía Ruiz Ruiz

This research is an investigation about the use of powder material additions with mortars lime base for a possible implementation in construction and/or restoration of historical sites. Mortars were elaborated in laboratory conditions with a 1:2.5 in weight proportion. One of the proofs to which these mortars were submitted was the test of capillary absorption; this way, the influence of the materials added to powder in these mortars determined porosity. Mortars were made with different percentages of materials. These powder materials are brick manufacturing ash, quarry powder, clay and maize starch. The test was run during 350 to 700 days. It obtained better results with 700 days than with 350 days.


Author(s):  
Zezhi Zeng ◽  
Gopinath Warrier ◽  
Y. Sungtaek Ju

Direct-contact heat transfer between a falling liquid film and a gas stream yield high heat transfer rates and as such it is routinely used in several industrial applications. This concept has been incorporated by us into the proposed design of a novel heat exchanger for indirect cooling of steam in power plants. The DILSHE (Direct-contact Liquid-on-String Heat Exchangers) module consists of an array of small diameter (∼ 1 mm) vertical strings with hot liquid coolant flowing down them due to gravity. A low- or near-zero vapor pressure liquid coolant is essential to minimize/eliminate coolant loss. Consequently, liquids such as Ionic Liquids and Silicone oils are ideal candidates for the coolant. The liquid film thickness is of the order of 1 mm. Gas (ambient air) flowing upwards cools the hot liquid coolant. Onset of fluid instabilities (Rayleigh-Plateau and/or Kapitza instabilities) result in the formation of a liquid beads, which enhance heat transfer due to additional mixing. The key to successfully designing and operating DILSHE is understanding the fundamentals of the liquid film fluid dynamics and heat transfer and developing an operational performance map. As a first step towards achieving these goals, we have undertaken a parametric experimental and numerical study to investigate the fluid dynamics of thin liquid films flowing down small diameter strings. Silicone oil and air are the working fluids in the experiments. The experiments were performed with a single nylon sting (fishing line) of diameter = 0.61 mm and height = 1.6 m. The inlet temperature of both liquid and air were constant (∼ 20 °C). In the present set of experiments the variables that were parametrically varied were: (i) liquid mass flow rate (0.05 to 0.23 g/s) and (ii) average air velocity (0 to 2.7 m/s). Visualization of the liquid flow was performed using a high-speed camera. Parameters such as base liquid film thickness, liquid bead shape and size, velocity (and hence frequency) of beads were measured from the high-speed video recordings. The effect of gas velocity on the dynamics of the liquid beads was compared to data available in the open literature. Within the range of gas velocities used in the experiments, the occurrence of liquid hold up and/or liquid blow over, if any, were also identified. Numerical simulations of the two-phase flow are currently being performed. The experimental results will be invaluable in validation/refinement of the numerical simulations and development of the operational map.


1988 ◽  
Vol 27 (9) ◽  
pp. 715-716
Author(s):  
P. A. Vityaz' ◽  
V. M. Kaptsevich ◽  
V. K. Sheleg ◽  
V. V. Savich ◽  
A. G. Kostornov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document