scholarly journals Influence of leachates on geotehnical and geochemical properties of termite mound soils

2021 ◽  
Vol 8 (1-2) ◽  
pp. 26-31
Author(s):  
Adebola Adekunle ◽  
Fidelis Nkeshita ◽  
Adetayo Akinsanya

This study investigated the influence of leachate prepared from Telfairia occidentalis on the geotechnical and geochemical properties of termite mound soil obtained from the premises of the federal university of agriculture, Abeokuta, south-western Nigeria. The termite mound soil samples were collected from three different locations and each sample collected was contaminated by mixing with leachates in percentage increments of 0% 10%, 15% and 20% of dry weight of the air-dried soil. The soil samples were subjected to Atterberg limits and hydraulic conductivity tests for geotechnical observation and X-ray fluorescence tests for geochemical tests. The range of values for the geotechnical analyses were obtained as; plastic limit (9.1% – 14.2%), liquid limit (28.6 % – 61%), plasticity index ((18.2% – 49.5%) and hydraulic conductivity (1.85 – 4.1 x 10-8) cm/sec) with a resultant reduction in the plastic limit, liquid limit and plasticity index values but an increase in the hydraulic conductivity of the samples as the leachate concentration increased. The results from X-ray fluorescence analyses after 20% leachate contamination showed that the major elemental chemical composition for the three samples were comprised of SiO2 (56.25 – 56.5%), Al2O3 (28.42 – 28.50%), Fe2O3 (4.46 – 6.5%), TiO2 (1.08 – 1.23%), CaO (1.45 – 1.60%), P2O5 (0 – 0.04%), K2O (0.9 – 6.1%) and MnO (0.02 – 4.7%). There was a marginal alteration of the indices with the values inferring the presence of a minimum composition of feldspar and a major composition of quartz-rich minerals and thus lending more credence to the presence of silicates as shown from the X-ray fluorescence results. It also infers that the termite mounds are predominantly made from sand materials. The termite soil samples obtained from the aforementioned locations may not be suitable for engineering works unless stabilization procedure is adopted.

2019 ◽  
Vol 266 ◽  
pp. 04001
Author(s):  
Atiqah Najwa Zainuddin ◽  
Mazidah Mukri ◽  
Raimi Syazwani Asmuni ◽  
Nor Izzati Ibrahim ◽  
Nor Azizah Che Azmi

Nano-clay is one of the innovation recently been studies as one of the enhancing materials to the soils. By adding a slight amount of nano-clay can improve some of behaviour such as hydraulic conductivity. Therefore, this research will investigate the performance of the hydraulic behaviour of different percentage of nano-clay in developing new soil liner design to be used in landfill. To complete the objectives, bentonite was pulverized by the process of high energy milling to obtain nano-bentonite. The milling sample is being analysed using Zeta Potential Analyzer and Field Emission Scanning Electron Microscope (FESEM). The laboratory studies were conducted by the determination geotechnical properties of the liquid limit, plastic limit, plasticity index shrinkage limit, particle density, compaction characteristic and also hydraulic conductivity value of raw bentonite mixed with 0%1%,2% and 3% of nano-bentonite. The laboratories result shows that the value of liquid limit, plastic limit, particle density and maximum dry density is increase in every addition of nano percentages meanwhile the value of plasticity index, optimum moisture content and hydraulic conductivity is decrease after adding nano-bentonite in the sample. The result shows the improvement of the soil by the geotechnical properties with addition of small amount of nano-bentonite.


Author(s):  
Y. C. Baysah ◽  
R. S. Ngumbu ◽  
A. K. Fayia ◽  
A. S. Moore ◽  
J. T. Toe Sr ◽  
...  

In Liberia, waste management is one of the main challenges faced by municipal authorities, environmental technicians and public health practitioners in their quest to maintain a clean, safe and healthy environment. The construction and operation of a sanitary landfill ensures adequate waste management and, by extension, the protection of both the environment and human receptors. This study presents the results of geotechnical investigations conducted on soils from two sedimentary units of Liberia: Paynesville Sandstone and Farmington River Formation. The intent of the study was to assess the suitability of the soil for use as landfill liner. Three soil samples were collected from each of the two sedimentary units and, using B.S 1377 (1990), soils characteristics such as particle size distribution, permeability, liquid limit, plastic limit, plasticity index and hydraulic conductivity were measured and presented as mean values. Hydraulic conductivity of a sanitary landfill liner is the most important parameter to consider in materials selection. The results of hydraulic conductivity obtained from the study showed that only the samples from Farmington River Formation met the USEPA (1994) and CGRM (2007) requirement of ≤ 1x10-9 m/sec suitable for use as landfill liner. The mean soil permeability results for the Paynesville Sandstone and Farmington River Formation were 2.5 mL/hr and 0.05 mL/hr respectively; implying that the samples from the Paynesville Sandstone are more permeable and, thus, more susceptible to leaching and groundwater contamination if used as a bottom liner in a landfill design. Based on the findings of this research, it can be concluded that the sample from the Farmington River Formation is more suitable for use as a natural material for landfill liner. The quality of the sample should, however, be improved by addition of small amounts of bentonite.


2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Moch. Sholeh ◽  
Dandung Novianto ◽  
Gerard Aponno

Dosen Teknik Sipil Politeknik Negeri Malang Clay consists of grains - grains are very small (<0002 mm) and shows the nature - the natureof plasticity and cohesion. Cohesion indicates the fact that part - the part that is attached to eachother, while the plasticity is a trait that allows the form of the material was changed - edit withoutchanging the content or without returning to its original form, and without any cracks or brokens.And clay with high plasticity index has strong support low when used as a basic foundation of thehighway, so the need for soil improvement.From the above problems then this study aims to engineer clay with red brick powder in fourcomparisons. The first native land. Both the original soil mixed with red brick powder 5%. Thethird native soil mixed with red brick powder 7.5%. The four original soil mixed with red brickpowder 10%. Each of these sought specific gravity, liquid limit, plastic limit and plasticity index onthe original soil, mixing 5%, 7.5% and 10%. From the analysis of data obtained the followingconclusion: the original soil, the value amounting to 60.9 Liquid limit, plastic limit values of 42.8and plasticity index value of 18.1. The most optimal additional percentage is 7.5%. And PlasticityIndex value at 7.5% is 20,31.Key words : Red brick powder, Soil Stability, Subgrade and the Road.


2018 ◽  
Vol 1 (1) ◽  
pp. 41
Author(s):  
Annisaa Dwiretnani

Clay is a type of soil that has a high shrinkage when the change in water content. Construction of roads built on clay soil often damaged, eg cracked or bumpy roads would be damaged so that road before reaching the age of the plan. This study analyzes the behavior of clay in the area of Mendalo Darat, Provinsi Jambi, get maximum soil density and optimum moisture content with the addition of gravel 10%, 20%, 30% and 40%, then tested in the from of nature of the soil, the California Bearing Ratio (CBR). The results, according to the Unified Soil Classification System (USCS) methods. The addition of gravel will cause the properties of the soil Liquid Limit (LL) decreased with Plastic Limit (PL) decreased so that the Plasticity Index (PI) decreased. The addition of gravel will be working actively on the CBR test. From the test results obtained, clay that is stabilized with gravel on variations of 10%, 20%, 30% and 40% indicate an increase in crayying capacity soil and significant decrease in plasticity index. On the gravel mixture of 40% there is significant increase in carrying capacity of 11,90% of power support for the original soil, and on the gravel mixture of 40% also decreased index plasticity of 1,21 % of the original soil plasticity index. The smaller the plasticity index, the carrying capacity is getting bigger.Keywords: clay, stabilized, CBR


2020 ◽  
Vol 19 (1) ◽  
pp. 79-86
Author(s):  
Muhammad Yunus ◽  
Muhammad Aswan

The road conditions in the Fakfak Regency area have suffered a lot of damage, this is related to the subgrade condition of the road in the form of clay. One method that is widely used to improve the characteristics of clay that does not fulfill the requirements as a road subgrade material is to add fly ash. Aim of this study was to determine the value of clay plasticity before and after adding rock ash with the percentage of stone ash 8%, 16%, 32%. From the results of testing on clay soaked for 7 days can reduce the liquid limit value where the largest decrease is 15,24% of the original soil occurs in the addition of 32% fly ash with a value of 66,86%. The plastic limit value also decreased by 20,40% from the original soil with a value of 46,10% at the addition of 32% fly ash. And the plasticity index value experienced the largest decrease in the addition of 32% stone ash with a decrease of 0,97% from the original soil with a value of 20,76%. In clay soil which was brooded for 14 days the largest liquid limit value decreased which was 18.72% of the original soil occurred in the addition of 32% fly ash with a value of 64,11%. The plastic limit value also decreased by 21,77% from the original land with a value of 45,31% at the addition of 32% fly ash. And the plasticity index value experienced the largest decrease in the addition of 32% stone ash with a decrease of 10,32% from the original land with a value of 18,80%.


1976 ◽  
Vol 24 (1) ◽  
pp. 43-57
Author(s):  
W.P. Stakman ◽  
B.G. Bishay

Particle size distribution, moisture retention curves and consistency limits were determined for six soils from northwestern Egypt. The soils contained 25-61% CaCO3 and attapulgite was the major clay mineral. In the clay and clay loam soils the CaCO3 was predominantly in the silt and clay fractions, in the sandy loam it was regularly distributed over the clay, silt and sand fractions and in the loamy sand it was mainly in the sand fraction. Decalcification shifted the particle size distribution to a coarser texture class and increased porosity and moisture content. Liquid limit and plasticity index increased with increasing clay and CaCO3 contents up to 40% clay and 35% CaCO3. The plastic limit stayed rather constant at increasing clay and CaCO3 contents. The liquid limit corresponded with suctions of pF 1.3-1.9 within the flex range from the saturated to the unsaturated condition of the pF curves. The plastic limit and the plasticity index corresponded with pF 2.1-3.0 and 2.6-3.8, respectively. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document