ENERGY RECOVERY FROM MUNICIPAL SOLID WASTE BY THERMAL CONVERSION TECHNOLOGIES IN CROSS-BORDER REGION – PRINCIPLES AND METHODS OF STUDY

Author(s):  
Miorița Ungureanu ◽  
◽  
Anamaria Dăscălescu ◽  
Jozsef Juhasz ◽  
◽  
...  

The paper presents the objectives of the project "Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies in Cross-border Region " funded by Hungary - Slovakia - Romania - Ukraine ENI CBC Programme 2014-2020. Through collaboration of the three researchers groups from Romania, Ukraine and Slovakia will be elaborate technical proposals for the thermal treatment methods of MSW and strategies of MSW thermal treatment for the all 3 regions (Maramures, Ivano-Frankivsk, Prešovský).

Author(s):  
Maksym Karpash ◽  
◽  
Artur Voronych ◽  

In the course of the implementation of the project funded by Hungary-Slovakia-Romania-Ukraine ENI Cross border Cooperation Program 2014-2020: Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies in Cross-border Region HUSKROUA / 1702 / 6.1 / 0015 the analysis of the system of MSW management in Ivano-Frankivsk region and the city of Ivano-Frankivsk was carried out. The volumes of formation and morphological composition of solid waste at the MSW landfill in the village of Rybne, which receives municipal solid waste from the settlements of Ivano-Frankivsk City Council, settlements of Tysmenytsia, Nadvirna, Kosiv, Kolomyia districts have been defined. The main directions of improving the current situation in the field of MSW management have been identified on the example of Ivano-Frankivsk region.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 752 ◽  
Author(s):  
Rabiatul Adawiyah Ali ◽  
Nik Nor Liyana Nik Ibrahim ◽  
Hon Loong Lam

The generation of municipal solid waste (MSW) is increasing globally every year, including in Malaysia. Approaching the year 2020, Malaysia still has MSW disposal issues since most waste goes to landfills rather than being utilized as energy. Process network synthesis (PNS) is a tool to optimize the conversion technologies of MSW. This study optimizes MSW conversion technologies using a PNS tool, the “process graph” (P-graph). The four highest compositions (i.e., food waste, agriculture waste, paper, and plastics) of MSW generated in Malaysia were optimized using a P-graph. Two types of conversion technologies were considered, biological conversion (anaerobic digestion) and thermal conversion (pyrolysis and incinerator), since limited data were available for use as optimization input. All these conversion technologies were compared with the standard method used: landfilling. One hundred feasible structure were generated using a P-graph. Two feasible structures were selected from nine, based on the maximum economic performance and minimal environmental impact. Feasible structure 9 was appointed as the design with the maximum economic performance (MYR 6.65 billion per annum) and feasible structure 7 as the design with the minimal environmental impact (89,600 m3/year of greenhouse gas emission).


2020 ◽  
Vol 5 (4) ◽  
pp. 202-209
Author(s):  
Alexander Topal ◽  
◽  
Iryna Holenko ◽  
Luidmyla Haponych ◽  
◽  
...  

For the municipal solid waste (MSW) to be used in a proper way, it is necessary to implement clean technologies capable of thermal treatment of MSW and RDF in order to produce heat and electricity while meeting current ecological requirements. Nowadays, a number of technologies for MSW/RDF thermal treating are being used worldwide. Among them, the most proven technologies, applicable for industrial introduction, have been considered while analyzing their advantages/ disadvantages accounting for local conditions of Ukraine.


2021 ◽  
Vol 13 (13) ◽  
pp. 7232
Author(s):  
Muhammad Mufti Azis ◽  
Jonas Kristanto ◽  
Chandra Wahyu Purnomo

Municipal solid waste (MSW) processing is still problematic in Indonesia. From the hierarchy of waste management, it is clear that energy recovery from waste could be an option after prevention and the 5R (rethink, refuse, reduce, reuse, recycle) processes. The Presidential Regulation No 35/2018 mandated the acceleration of waste-to-energy (WtE) plant adoption in Indonesia. The present study aimed to demonstrate a techno-economic evaluation of a commercial WtE plant in Indonesia by processing 1000 tons of waste/day to produce ca. 19.7 MW of electricity. The WtE electricity price is set at USD 13.35 cent/kWh, which is already higher than the average household price at USD 9.76 cent/kWh. The capital investment is estimated at USD 102.2 million. The annual operational cost is estimated at USD 12.1 million and the annual revenue at USD 41.6 million. At this value, the internal rate of return (IRR) for the WtE plant is 25.32% with a payout time (PoT) of 3.47 years. In addition, this study also takes into account electricity price sales, tipping fee, and pretreatment cost of waste. The result of a sensitivity analysis showed that the electricity price was the most sensitive factor. This study reveals that it is important to maintain a regulated electricity price to ensure the sustainability of the WtE plant in Indonesia.


2021 ◽  
pp. 0734242X2110039
Author(s):  
Federico Sisani ◽  
Amani Maalouf ◽  
Francesco Di Maria

The environmental and energy performances of the Italian municipal solid waste incineration (MSWI) system was investigated by a life cycle assessment approach. On average the 39 MSWIs operating in Italy in 2018 treated about 6,000,000 Mg of residual municipal solid waste (RMSW) recovering on average from 448 kWh Mg−1 RMSW to 762 kWh Mg−1 RMSW of electricity and from 732 kWh Mg−1 RMSW to 1102 kWh Mg−1 RMSW of heat. The average quantity of CO2eq Mg−1 RMSW emitted ranged from about 800 up to about 1000 depending on the size and on the energy recovery scheme of the facility. Avoided impacts (i.e., negative values) were detected for the kg PM2,5eq Mg−1 RMSW and for human health (disability-adjusted life year Mg−1 RMSW). The determination of the hybrid primary energy index (MJ Mg−1 RMSW) indicated that mainly large size facilities and those operating according to a power and heat energy recovery scheme are effectively able to replace other primary energies by the exploitation of the lower heating values of the RMSW.


2021 ◽  
Vol 11 (9) ◽  
pp. 3939
Author(s):  
Krzysztof Pikoń ◽  
Nikolina Poranek ◽  
Adrian Czajkowski ◽  
Beata Łaźniewska-Piekarczyk

The purpose of the study presented in this text is to show the influence of COVID-19 on waste management systems and circular economy stream, and their impact on circular economy, particularly the economic impact of the pandemic on the waste management sector, impact on circular economy objectives’ implementation as well as additional challenges like the need for hygienization of waste streams during different implementation efforts, such as changes in the municipal solid waste market and different waste processes of their disposal. Additionally, some methods—such as thermal treatment—which seemed to be not fully aligned with the circular economy approach have advantages not taken into account before. Incineration of higher volume of waste affects the waste structure and will change some of the circular economy objectives. The analysis was carried out on the example of the Polish market.


Sign in / Sign up

Export Citation Format

Share Document