scholarly journals The Generating Function of Ternary Trees and Continued Fractions

10.37236/1079 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Ira M. Gessel ◽  
Guoce Xin

Michael Somos conjectured a relation between Hankel determinants whose entries ${1\over 2n+1}{3n\choose n}$ count ternary trees and the number of certain plane partitions and alternating sign matrices. Tamm evaluated these determinants by showing that the generating function for these entries has a continued fraction that is a special case of Gauss's continued fraction for a quotient of hypergeometric series. We give a systematic application of the continued fraction method to a number of similar Hankel determinants. We also describe a simple method for transforming determinants using the generating function for their entries. In this way we transform Somos's Hankel determinants to known determinants, and we obtain, up to a power of $3$, a Hankel determinant for the number of alternating sign matrices. We obtain a combinatorial proof, in terms of nonintersecting paths, of determinant identities involving the number of ternary trees and more general determinant identities involving the number of $r$-ary trees.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Niklas Eriksen ◽  
Ragnar Freij ◽  
Johan Wästlund

International audience We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive several explicit formulas. To this end, we consider fixed point $\lambda$-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler's difference tables. We also prove that except in a trivial special case, if a permutation $\pi$ is chosen uniformly among all permutations on $n$ elements, the events that $\pi$ has descents in a set $S$ of positions, and that $\pi$ is a derangement, are positively correlated.


10.37236/121 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Niklas Eriksen ◽  
Ragnar Freij ◽  
Johan Wästlund

We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive several explicit formulas. To this end, we consider fixed point $\lambda$-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler's difference tables. We also prove that except in a trivial special case, if a permutation $\pi$ is chosen uniformly among all permutations on $n$ elements, the events that $\pi$ has descents in a set $S$ of positions, and that $\pi$ is a derangement, are positively correlated.


2021 ◽  
Vol 33 (4) ◽  
pp. 973-986
Author(s):  
Young Jae Sim ◽  
Paweł Zaprawa

Abstract In recent years, the problem of estimating Hankel determinants has attracted the attention of many mathematicians. Their research have been focused mainly on deriving the bounds of H 2 , 2 {H_{2,2}} or H 3 , 1 {H_{3,1}} over different subclasses of 𝒮 {\mathcal{S}} . Only in a few papers third Hankel determinants for non-univalent functions were considered. In this paper, we consider two classes of analytic functions with real coefficients. The first one is the class 𝒯 {\mathcal{T}} of typically real functions. The second object of our interest is 𝒦 ℝ ⁢ ( i ) {\mathcal{K}_{\mathbb{R}}(i)} , the class of functions with real coefficients which are convex in the direction of the imaginary axis. In both classes, we find lower and upper bounds of the third Hankel determinant. The results are sharp.


2004 ◽  
Vol 04 (01) ◽  
pp. 63-76 ◽  
Author(s):  
OLIVER JENKINSON

Given a non-empty finite subset A of the natural numbers, let EA denote the set of irrationals x∈[0,1] whose continued fraction digits lie in A. In general, EA is a Cantor set whose Hausdorff dimension dim (EA) is between 0 and 1. It is shown that the set [Formula: see text] intersects [0,1/2] densely. We then describe a method for accurately computing dimensions dim (EA), and employ it to investigate numerically the way in which [Formula: see text] intersects [1/2,1]. These computations tend to support the conjecture, first formulated independently by Hensley, and by Mauldin & Urbański, that [Formula: see text] is dense in [0,1]. In the important special case A={1,2}, we use our computational method to give an accurate approximation of dim (E{1,2}), improving on the one given in [18].


10.37236/2153 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Masanori Ando

In this paper, we give combinatorial proofs and new generalizations of $q$-series identities of Dilcher and Uchimura related to divisor function. Some interesting combinatorial results related to partition and arm-length are also presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Wathek Chammam

In this paper, using a study of the polynomial of Jacobi, we give an evaluation of the Hankel determinants that are associated with the sequence of Catalan–Qi numbers and several sequences of series involving the Catalan–Qi numbers.


2019 ◽  
Vol 108 (2) ◽  
pp. 177-201
Author(s):  
DZMITRY BADZIAHIN ◽  
EVGENIY ZORIN

In this paper we extend and generalize, up to a natural bound of the method, our previous work Badziahin and Zorin [‘Thue–Morse constant is not badly approximable’, Int. Math. Res. Not. IMRN 19 (2015), 9618–9637] where we proved, among other things, that the Thue–Morse constant is not badly approximable. Here we consider Laurent series defined with infinite products $f_{d}(x)=\prod _{n=0}^{\infty }(1-x^{-d^{n}})$, $d\in \mathbb{N}$, $d\geq 2$, which generalize the generating function $f_{2}(x)$ of the Thue–Morse number, and study their continued fraction expansion. In particular, we show that the convergents of $x^{-d+1}f_{d}(x)$ have a regular structure. We also address the question of whether the corresponding Mahler numbers $f_{d}(a)\in \mathbb{R}$, $a,d\in \mathbb{N}$, $a,d\geq 2$, are badly approximable.


2019 ◽  
Vol 149 (03) ◽  
pp. 831-847 ◽  
Author(s):  
Bao-Xuan Zhu

AbstractGiven a sequence of polynomials$\{x_k(q)\}_{k \ges 0}$, define the transformation$$y_n(q) = a^n\sum\limits_{i = 0}^n {\left( \matrix{n \cr i} \right)} b^{n-i}x_i(q)$$for$n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function ofyn(q) and that ofxn(q). We also prove that the transformation preservesq-TPr+1(q-TP) property of the Hankel matrix$[x_{i+j}(q)]_{i,j \ges 0}$, in particular forr= 2,3, implying ther-q-log-convexity of the sequence$\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of typesAandB, derangement polynomials typesAandB, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strongq-log-convexity of derangement polynomials typeB, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strongq-log-convexity.


Sign in / Sign up

Export Citation Format

Share Document