scholarly journals Cycle Index, Weight Enumerator, and Tutte Polynomial

10.37236/1663 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Peter J. Cameron

With every linear code is associated a permutation group whose cycle index is the weight enumerator of the code (up to a trivial normalisation). There is a class of permutation groups (the IBIS groups) which includes the groups obtained from codes as above. With every IBIS group is associated a matroid; in the case of a group from a code, the matroid differs only trivially from that which arises directly from the code. In this case, the Tutte polynomial of the code specialises to the weight enumerator (by Greene's Theorem), and hence also to the cycle index. However, in another subclass of IBIS groups, the base-transitive groups, the Tutte polynomial can be derived from the cycle index but not vice versa. I propose a polynomial for IBIS groups which generalises both Tutte polynomial and cycle index.

1993 ◽  
Vol 113 (2) ◽  
pp. 267-280 ◽  
Author(s):  
G. E. Farr

AbstractThe Whitney quasi-rank generating function, which generalizes the Whitney rank generating function (or Tutte polynomial) of a graph, is introduced. It is found to include as special cases the weight enumerator of a (not necessarily linear) code, the percolation probability of an arbitrary clutter and a natural generalization of the chromatic polynomial. The crucial construction, essentially equivalent to one of Kung, is a means of associating, to any function, a rank-like function with suitable properties. Some of these properties, including connections with the Hadamard transform, are discussed.


1966 ◽  
Vol 27 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Michio Suzuki

1. When a permutation group G on a set Ω is given, a transitive extension G of G is defined to be a transitive permutation group on the set Γ which is a union of Ω and a new point ∞ such that the stabilizer of ∞ in G1 is isomorphic to G as a permutation group on Ω. The purpose of this paper is to prove that many known simple groups which can be represented as doubly transitive groups admit no transitive extension. Precise statement is found in Theorem 2. For example, the simple groups discovered by Ree [5] do not admit transitive extensions. Theorem 2 includes also a recent result of D. R. Hughes [3] which states that the unitary group U3(q) q>2 does not admit a transitive extension. As an application we prove a recent theorem of H. Nagao [4], which generalizes a theorem of Wielandt on the non-existence of 8-transitive permutation groups not containing the alternating groups under Schreier’s conjecture.


2021 ◽  
pp. 1-40
Author(s):  
NICK GILL ◽  
BIANCA LODÀ ◽  
PABLO SPIGA

Abstract Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $ . We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$ . In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$ , the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


10.37236/3262 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Simon R. Blackburn

A rack of order $n$ is a binary operation $\vartriangleright$ on a set $X$ of cardinality $n$, such that right multiplication is an automorphism. More precisely, $(X,\vartriangleright)$ is a rack provided that the map $x\mapsto x\vartriangleright y$ is a bijection for all $y\in X$, and $(x\vartriangleright y)\vartriangleright z=(x\vartriangleright z)\vartriangleright (y\vartriangleright z)$ for all $x,y,z\in X$.The paper provides upper and lower bounds of the form $2^{cn^2}$ on the number of isomorphism classes of racks of order $n$. Similar results on the number of isomorphism classes of quandles and kei are obtained. The results of the paper are established by first showing how an arbitrary rack is related to its operator group (the permutation group on $X$ generated by the maps $x\mapsto x\vartriangleright y$ for $y\in Y$), and then applying some of the theory of permutation groups. The relationship between a rack and its operator group extends results of Joyce and of Ryder; this relationship might be of independent interest.


2019 ◽  
Vol 19 (12) ◽  
pp. 2150005
Author(s):  
Yong Yang

Let [Formula: see text] be a permutation group of degree [Formula: see text] and let [Formula: see text] denote the number of set-orbits of [Formula: see text]. We determine [Formula: see text] over all groups [Formula: see text] that satisfy certain restrictions on composition factors.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


2001 ◽  
Vol 71 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Cheryl E. Praeger ◽  
Aner Shalev

AbstractA permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive permutation group is quasiprimitive, but the converse is not true. In this paper we start a project whose goal is to check which of the classical results on finite primitive permutation groups also holds for quasiprimitive ones (possibly with some modifications). The main topics addressed here are bounds on order, minimum degree and base size, as well as groups containing special p-elements. We also pose some problems for further research.


2004 ◽  
Vol 03 (04) ◽  
pp. 427-435
Author(s):  
C. FRANCHI

Let Ω be a finite linearly ordered set and let k be a positive integer. A permutation group G on Ω is called co-k-restricted min-wise independent on Ω if [Formula: see text] for any X⊆Ω such that |X|≥|Ω|-k+1 and for any x∈X. We show that co-k-restricted min-wise independent groups are exactly the groups with the property that for each subset X⊆Ω with |X|≤k-1, the stabilizer G{X} of X in G is transitive on Ω\X. Using this fact, we determine all co-k-restricted min-wise independent groups.


1966 ◽  
Vol 27 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Tosiro Tsuzuku

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω. (This is also simply denoted by G). Two permutation groups (G, Ω) and (G, Γ) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that (g(i))τ=gσ(iτ) for g ∊ G and i∊Ω. For a subset Δ of Ω, those elements of G which leave each point of Δ individually fixed form a subgroup GΔ of G which is called a stabilizer of Δ. A subset Γ of Ω is called an orbit of GΔ if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer Ga of a ∊ Ω, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman M).


Sign in / Sign up

Export Citation Format

Share Document