scholarly journals Schur-Positivity in a Square

10.37236/3796 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Cristina Ballantine ◽  
Rosa Orellana

Determining if a symmetric function is Schur-positive is a prevalent and, in general, a notoriously difficult problem.  In this paper we study the Schur-positivity of a family of symmetric functions.  Given a partition $\nu$, we denote by $\nu^c$ its complement in a square partition $(m^m)$.   We conjecture a  Schur-positivity criterion  for symmetric functions of the form $s_{\mu'}s_{\mu^c}-s_{\nu'}s_{\nu^c}$, where $\nu$ is a partition of weight $|\mu|-1$ contained in $\mu$ and the complement of $\mu$ is taken in the same square partition as the complement of $\nu$. We prove the conjecture in many cases.

10.37236/9696 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Emmanuella Sandratra Rambeloson ◽  
John Shareshian

We show that no tree on twenty vertices with maximum degree ten has Schur positive chromatic symmetric function, thereby providing a counterexample to a conjecture of Dahlberg, She and van Willigenburg.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


1969 ◽  
Vol 12 (5) ◽  
pp. 615-623 ◽  
Author(s):  
K.V. Menon

The generating series for the elementary symmetric function Er, the complete symmetric function Hr, are defined byrespectively.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 897 ◽  
Author(s):  
Huan-Nan Shi ◽  
Wei-Shih Du

In this paper, by applying the decision theorem of the Schur-power convex function, the Schur-power convexity of a class of complete symmetric functions are studied. As applications, some new inequalities are established.


2012 ◽  
Vol 22 (03) ◽  
pp. 1250022 ◽  
Author(s):  
ADRIANO GARSIA ◽  
NOLAN WALLACH ◽  
GUOCE XIN ◽  
MIKE ZABROCKI

This work lies across three areas of investigation that are by themselves of independent interest. A problem that arose in quantum computing led us to a link that tied these areas together. This link led to the calculation of some Kronecker coefficients by computing constant terms and conversely the computations of certain constant terms by computing Kronecker coefficients by symmetric function methods. This led to results as well as methods for solving numerical problems in each of these separate areas.


Author(s):  
V. J. Baston

In (l) Hunter proved that the complete symmetric functions of even order are positive definite by obtaining the inequalitywhere ht denotes the complete symmetric function of order t. In this note we show that the inequality can be strengthened, which, in turn, enables theorem 2 of (l) to be sharpened. We also obtain a special case of an inequality conjectured by McLeod(2).


10.37236/4761 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Christos A. Athanasiadis

The chromatic quasisymmetric function of a graph was introduced by Shareshian and Wachs as a refinement of Stanley's chromatic symmetric function. An explicit combinatorial formula, conjectured by Shareshian and Wachs, expressing the chromatic quasisymmetric function of the incomparability graph of a natural unit interval order in terms of power sum symmetric functions, is proven. The proof uses a formula of Roichman for the irreducible characters of the symmetric group.


10.37236/1264 ◽  
1995 ◽  
Vol 3 (2) ◽  
Author(s):  
Richard P. Stanley

For every finite graded poset $P$ with $\hat{0}$ and $\hat{1}$ we associate a certain formal power series $F_P(x) = F_P(x_1,x_2,\dots)$ which encodes the flag $f$-vector (or flag $h$-vector) of $P$. A relative version $F_{P/\Gamma}$ is also defined, where $\Gamma$ is a subcomplex of the order complex of $P$. We are interested in the situation where $F_P$ or $F_{P/\Gamma}$ is a symmetric function of $x_1,x_2,\dots$. When $F_P$ or $F_{P/\Gamma}$ is symmetric we consider its expansion in terms of various symmetric function bases, especially the Schur functions. For a class of lattices called $q$-primary lattices the Schur function coefficients are just values of Kostka polynomials at the prime power $q$, thus giving in effect a simple new definition of Kostka polynomials in terms of symmetric functions. We extend the theory of lexicographically shellable posets to the relative case in order to show that some examples $(P,\Gamma)$ are relative Cohen-Macaulay complexes. Some connections with the representation theory of the symmetric group and its Hecke algebra are also discussed.


1959 ◽  
Vol 11 ◽  
pp. 383-396 ◽  
Author(s):  
Marvin Marcus ◽  
Roger Purves

In this paper we examine the structure of certain linear transformations T on the algebra of w-square matrices Mn into itself. In particular if A ∈ Mn let Er(A) be the rth elementary symmetric function of the eigenvalues of A. Our main result states that if 4 ≤ r ≤ n — 1 and Er(T(A)) = Er(A) for A ∈ Mn then T is essentially (modulo taking the transpose and multiplying by a constant) a similarity transformation:No such result as this is true for r = 1,2 and we shall exhibit certain classes of counterexamples. These counterexamples fail to work for r = 3 and the structure of those T such that E3(T(A)) = E3(A) for all ∈ Mn is unknown to us.


1972 ◽  
Vol 15 (1) ◽  
pp. 133-135 ◽  
Author(s):  
K. V. Menon

Let Er denote the rth elementary symmetric function on α1 α2,…,αm which is defined by1E0 = 1 and Er=0(r>m).We define the rth symmetric mean by2where denote the binomial coefficient. If α1 α2,…,αm are positive reals thenwe have two well-known inequalities3and4In this paper we consider a generalization of these inequalities. The inequality (4) is known as Newton's inequality which contains the arithmetic and geometric mean inequality.


Sign in / Sign up

Export Citation Format

Share Document