EFFECTS OF WATER TEMPERATURE ON SERUM CONTENT OF REACTIVE OXYGEN SPECIES AND ANTIOXIDANT DEFENSE SYSTEM IN CHINESE STURGEON,ACIPENSER SINENSIS

2008 ◽  
Vol 32 (3) ◽  
pp. 327-332 ◽  
Author(s):  
Da-Peng LI
2012 ◽  
Vol 2012 ◽  
pp. 1-37 ◽  
Author(s):  
Mohammad Anwar Hossain ◽  
Pukclai Piyatida ◽  
Jaime A. Teixeira da Silva ◽  
Masayuki Fujita

Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.


2021 ◽  
Vol 22 (17) ◽  
pp. 9326
Author(s):  
Mirza Hasanuzzaman ◽  
Md. Rakib Hossain Raihan ◽  
Abdul Awal Chowdhury Masud ◽  
Khussboo Rahman ◽  
Farzana Nowroz ◽  
...  

The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2537
Author(s):  
Mirza Hasanuzzaman ◽  
Khursheda Parvin ◽  
Kirti Bardhan ◽  
Kamrun Nahar ◽  
Taufika Islam Anee ◽  
...  

Global food security for a growing population with finite resources is often challenged by multiple, simultaneously occurring on-farm abiotic stresses (i.e., drought, salinity, low and high temperature, waterlogging, metal toxicity, etc.) due to climatic uncertainties and variability. Breeding for multiple stress tolerance is a long-term solution, though developing multiple-stress-tolerant crop varieties is still a challenge. Generation of reactive oxygen species in plant cells is a common response under diverse multiple abiotic stresses which play dual role of signaling molecules or damaging agents depending on concentration. Thus, a delicate balance of reactive oxygen species generation under stress may improve crop health, which depends on the natural antioxidant defense system of the plants. Biostimulants represent a promising type of environment-friendly formulation based on natural products that are frequently used exogenously to enhance abiotic stress tolerance. In this review, we illustrate the potential of diverse biostimulants on the activity of the antioxidant defense system of major crop plants under stress conditions and their other roles in the management of abiotic stresses. Biostimulants have the potential to overcome oxidative stress, though their wider applicability is tightly regulated by dose, crop growth stage, variety and type of biostimulants. However, these limitations can be overcome with the understanding of biostimulants’ interaction with ROS signaling and the antioxidant defense system of the plants.


Sign in / Sign up

Export Citation Format

Share Document