Lane detection algorithm based on morphological structure-elements model

2009 ◽  
Vol 29 (2) ◽  
pp. 440-443 ◽  
Author(s):  
Tao LEI ◽  
Yang-yu FAN ◽  
Xiao-peng WANG ◽  
Lü-cheng WANG
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1665
Author(s):  
Jakub Suder ◽  
Kacper Podbucki ◽  
Tomasz Marciniak ◽  
Adam Dąbrowski

The aim of the paper was to analyze effective solutions for accurate lane detection on the roads. We focused on effective detection of airport runways and taxiways in order to drive a light-measurement trailer correctly. Three techniques for video-based line extracting were used for specific detection of environment conditions: (i) line detection using edge detection, Scharr mask and Hough transform, (ii) finding the optimal path using the hyperbola fitting line detection algorithm based on edge detection and (iii) detection of horizontal markings using image segmentation in the HSV color space. The developed solutions were tuned and tested with the use of embedded devices such as Raspberry Pi 4B or NVIDIA Jetson Nano.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142110087
Author(s):  
Qiao Huang ◽  
Jinlong Liu

The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added.


2012 ◽  
Vol 479-481 ◽  
pp. 65-70
Author(s):  
Xiao Hui Zhang ◽  
Liu Qing ◽  
Mu Li

Based on the target detection of alignment template, the paper designs a lane alignment template by using correlation matching method, and combines with genetic algorithm for template stochastic matching and optimization to realize the lane detection. In order to solve the real-time problem of lane detection algorithm based on genetic algorithm, this paper uses the high performance multi-core DSP chip TMS320C6474 as the core, combines with high-speed data transmission technology of Rapid10, realizes the hardware parallel processing of the lane detection algorithm. By Rapid10 bus, the data transmission speed between the DSP and the DSP can reach 3.125Gbps, it basically realizes transmission without delay, and thereby solves the high speed transmission of the large data quantity between processor. The experimental results show that, no matter the calculated lane line, or the running time is better than the single DSP and PC at the parallel C6474 platform. In addition, the road detection is accurate and reliable, and it has good robustness.


2012 ◽  
Vol 430-432 ◽  
pp. 1871-1876
Author(s):  
Hui Bo Bi ◽  
Xiao Dong Xian ◽  
Li Juan Huang

For the problem of tramcar collision accident in coal mine underground, a monocular vision-based tramcar anti-collision warning system based on ARM and FPGA was designed and implemented. In this paper, we present an improved fast lane detection algorithm based on Hough transform. Besides, a new distance measurement and early-warning system based on the invariance of the lane width is proposed. System construction, hardware architecture and software design are given in detail. The experiment results show that the precision and speed of the system can satisfy the application requirement.


Author(s):  
Gautham G ◽  
Deepika Venkatesh ◽  
A. Kalaiselvi

In recent years, due to the increasing density of traffic every year, it is been a hassle for drivers in metropolitan cities to maintain lane and speeds on road. The drivers usually waste time and effort in idling their cars to maintain in traffic conditions. The drivers get easily frustrated when they tried to maintain the path because of the havoc created. Transportation Institute found that the odds of a crash(or near crash) more than doubled when the driver took his or her eyes off the road formore than two seconds. This tends to cause about 23% of accidents when not following their lane paths. In worst case the fuel economy often drops and tends to cause increase in pollution about 28% to 36% per vehicle annually. This corresponds to the wastage of fuel. Owing to this problem, we proposed an ingenious method by which the lane detection can be made affordable and applicable to existing automobiles. The proposed prototype of lane detection is carried over with a temporary autonomous bot which is interfaced with Raspberry pi processor, loaded with the lane detection algorithm. This prototype bot is made to get live video which is then processed by the algorithm. Also, the preliminary setups are carried over in such a way that it is easily implemented and accessible at low cost with better efficiency, providing a better impact on future automobiles.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4308 ◽  
Author(s):  
Xiang Zhang ◽  
Wei Yang ◽  
Xiaolin Tang ◽  
Jie Liu

To improve the accuracy of lane detection in complex scenarios, an adaptive lane feature learning algorithm which can automatically learn the features of a lane in various scenarios is proposed. First, a two-stage learning network based on the YOLO v3 (You Only Look Once, v3) is constructed. The structural parameters of the YOLO v3 algorithm are modified to make it more suitable for lane detection. To improve the training efficiency, a method for automatic generation of the lane label images in a simple scenario, which provides label data for the training of the first-stage network, is proposed. Then, an adaptive edge detection algorithm based on the Canny operator is used to relocate the lane detected by the first-stage model. Furthermore, the unrecognized lanes are shielded to avoid interference in subsequent model training. Then, the images processed by the above method are used as label data for the training of the second-stage model. The experiment was carried out on the KITTI and Caltech datasets, and the results showed that the accuracy and speed of the second-stage model reached a high level.


Sign in / Sign up

Export Citation Format

Share Document