A novel method for absolute protein quantification using18O isotope labeled concatamers of Q peptides combined with isotope dilution-multiple reaction monitoring mass spectrometry

2013 ◽  
Vol 31 (6) ◽  
pp. 522 ◽  
Author(s):  
Nannan LI ◽  
Lianqi ZHOU ◽  
Xinli MAO ◽  
Jiao ZHANG ◽  
Junying WEI ◽  
...  
2018 ◽  
Vol 25 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Shobha Devi ◽  
Yi-Cheng Lin ◽  
Yen-Peng Ho

A simple label-free method was developed for the quantification of the herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase using multiple reaction monitoring liquid chromatography–mass spectrometry. Sample pretreatment procedures including ion exchange chromatography and CaCl2 precipitation were used to purify the 5-enolpyruvylshikimate-3-phosphate synthase protein. Quantification of various percentages of genetically modified soya (0.5–100%) was performed by selecting suitable endogenous soybean peptides as internal standards. Results indicated that Gly P (QGDVFVVPR) and Lec P (LQLNK) are useful internal standards for the quantification of low and high percentages of genetically modified soya, respectively. Linear regression analysis of both calibration curves yielded good linearity with R2 of 0.99. This approach is a convenient and accurate quantification method for genetically modified soya at a level as low as 0.5% (less than the current EU threshold for labeling genetically modified soya).


2015 ◽  
Vol 7 (19) ◽  
pp. 8009-8018 ◽  
Author(s):  
Hui Yan ◽  
Feiran Hao ◽  
Nannan Li ◽  
Jiabin Li ◽  
Bo Peng ◽  
...  

A novel method using 18O/metal isobaric labeling combined with multiple reaction monitoring mass spectrometry for absolute quantification of target proteomes was established.


2014 ◽  
Vol 60 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Lynn Carr ◽  
Anne-Laure Gagez ◽  
Marie Essig ◽  
François-Ludovic Sauvage ◽  
Pierre Marquet ◽  
...  

Abstract BACKGROUND Blood concentrations of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus are currently measured to monitor immunosuppression in transplant patients. The measurement of calcineurin (CN) phosphatase activity has been proposed as a complementary pharmacodynamic approach. However, determining CN activity with current methods is not practical. We developed a new method amenable to routine use. METHODS Using liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS), we quantified CN activity by measuring the dephosphorylation of a synthetic phosphopeptide substrate. A stable isotope analog of the product peptide served as internal standard, and a novel inhibitor cocktail minimized dephosphorylation by other major serine/threonine phosphatases. The assay was used to determine CN activity in peripheral blood mononuclear cells (PBMCs) isolated from 20 CNI-treated kidney transplant patients and 9 healthy volunteers. RESULTS Linearity was observed from 0.16 to 2.5 μmol/L of product peptide, with accuracy in the 15% tolerance range. Intraassay and interassay recoveries were 100.6 (9.6) and 100 (7.5), respectively. Michaelis–Menten kinetics for purified CN were Km = 10.7 (1.6) μmol/L, Vmax = 2.8 (0.3) μmol/min · mg, and for Jurkat lysate, Km = 182.2 (118.0) μmol/L, Vmax = 0.013 (0.006) μmol/min · mg. PBMC CN activity was successfully measured in a single tube with an inhibitor cocktail. CONCLUSIONS Because LC-MRM-MS is commonly used in routine clinical dosage of drugs, this CN activity assay could be applied, with parallel blood drug concentration monitoring, to a large panel of patients to reevaluate the validity of PBMC CN activity monitoring.


Sign in / Sign up

Export Citation Format

Share Document