Vibration-based Terrain Classification for Mobile Robots Using Support Vector Machine

ROBOT ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 660 ◽  
Author(s):  
Qiang LI ◽  
Kai XUE ◽  
He XU ◽  
Wenlin PAN ◽  
Tianlong WANG
Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


2012 ◽  
Vol 220-223 ◽  
pp. 1171-1174
Author(s):  
Qiang Li ◽  
Kai Xue ◽  
He Xu ◽  
Wen Lin Pan ◽  
Zhi Xu Li

Human ability to explore planets (e.g. the moon, Mars) depends on the autonomous mobile performance of planetary exploration robots, so studying on terrain classification is important for it. Vibration-based terrain classification unlike vision classification affected by lighting variations, easily cheated by covering of surface, it analyses the vibration signals from wheel-terrain interaction to classify. Three accelerometers in x, y, z direction and a microphone in z direction were mounted to arm of the left-front wheel. The robot drove on the sand, gravel, grass, clay and asphalt at six speeds, three groups of acceleration signal and one group of sound pressure signal were received. The original signals were dealt using Time Amplitude Domain Analysis. Original data were divided into segments, each segment was a three centimeters distance of driving; eleven features from every segment were normalized. The data from four sensors were merged into a forty-four dimensions feature vector. Ten one against one classifiers of Support Vector Machine (SVM) were used to classify; one against one SVM program from LibSVM was applied to multi-class classification using voting strategy in MATLAB. Facing to the same number of votes, we propose a new algorithm. Experimental results demonstrate the effectiveness of the feature extraction method and the multi-class SVM algorithm.


2020 ◽  
Author(s):  
V Vasilevska ◽  
K Schlaaf ◽  
H Dobrowolny ◽  
G Meyer-Lotz ◽  
HG Bernstein ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document