scholarly journals Internal Standards for Quantitative Analysis of Chemical Warfare Agents by the GC/MS Method: Nerve Agents

Author(s):  
Tomas Capoun ◽  
Jana Krykorkova
Chemosensors ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 30 ◽  
Author(s):  
Vladimír Pitschmann ◽  
Lukáš Matějovský ◽  
Kamila Lunerová ◽  
Michal Dymák ◽  
Martin Urban ◽  
...  

This work provides a summary of our results in the area of the experimental development of detection paper for the detection of liquid phase chemical warfare agents (drops, aerosol), the presence of which is demonstrated by the development of characteristic coloring visible to the naked eye. The basis of the detection paper is a cellulose carrier saturated with the dithienobenzotropone monomer (RM1a)–chromogenic chemosensor sensitive to nerve agents of the G type, blister agent lewisite, or choking agent diphosgene. We achieve a higher coloring brilliance and the limit certain interferences by using this chemosensor in the mix of the o-phenylendiamine-pyronine (PY-OPD). We prove that the addition of the Bromocresol Green pH indicator even enables detection of nerve agents of the V type, or, nitrogen mustards, while keeping a high stability of the detection paper and its functions for other chemical warfare agents. We resolve the resistance against the undesirable influence of water by providing a hydrophobic treatment of the carrier surface.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tomas Capoun ◽  
Jana Krykorkova

General conditions and requirements for an internal standard useful in the determination of chemical warfare agents (CWAs) by the method of gas chromatography coupled with mass detection (GC/MS) were defined. The determination is based on a GC/MS analysis of a mixture of a CWA with an internal standard, conversion of the TIC chromatogram to a chromatogram extracted at a particular m/z ratio, and calculation of the CWA concentration from the internal standard concentration, response factor, and chromatographic peak areas. Available internal standards were identified, and they were verified for seven organophosphorus nerve-paralysing agents. Corresponding response factors were determined as a ratio of gradients of the linear functions of the peak area and compound concentration. Linearity, repeatability, and accuracy of the measurements were evaluated. The determination can be performed on all GC/MS systems of the Fire Rescue Service of the Czech Republic (FRS), where no CWA standards are available.


2019 ◽  
Vol 19 (12) ◽  
pp. 970-979 ◽  
Author(s):  
J. Bajgar ◽  
J. Kassa ◽  
T. Kucera ◽  
K. Musilek ◽  
D. Jun ◽  
...  

Nerve agents belong to the most dangerous chemical warfare agents and can be/were misused by terrorists. Effective prophylaxis and treatment is necessary to diminish their effect. General principles of prophylaxis are summarized (protection against acetylcholinesterase inhibition, detoxification, treatment “in advance” and use of different drugs). They are based on the knowledge of mechanism of action of nerve agents. Among different examinations, it is necessary to test prophylactic effectivity in vivo and compare the results with protection in vitro. Chemical and biological approaches to the development of new prophylactics would be applied simultaneously during this research. Though the number of possible prophylactics is relatively high, the only four drugs were introduced into military medical practice. At present, pyridostigmine seems to be common prophylactic antidote; prophylactics panpal (tablets with pyridostigmine, trihexyphenidyl and benactyzine), transant (transdermal patch containing HI-6) are other means introduced into different armies as prophylactics. Scavenger commercionally available is Protexia®. Future development will be focused on scavengers, and on other drugs either reversible cholinesterase inhibitors (e.g., huperzine A, gallantamine, physostigmine, acridine derivatives) or other compounds.


2003 ◽  
Vol 18 (3) ◽  
pp. 208-216 ◽  
Author(s):  
Pål Aas

AbstractThe use of chemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered to be a real threat, particularly following the terrorist attacks on 11 September 2001 against the World Trade Center in New York and against the Pentagon in Washington, DC. Over the past 10 years, terrorists have been planning to use or have used chemical warfare agents on several occasions around the world, and the attacks in 2001 illustrate their willingness to use any means of warfare to cause death and destruction among civilians. In spite of new international treaties with strong verification measures and with an aim to prohibit and prevent the use of weapons of mass destruction, nevertheless, some countries and terrorist groups have been able to develop, produce, and use such weapons, particularly nerve agents, in domestic terrorist attacks or during warfare in international conflicts. This article reviews current medical therapy for nerve-agent intoxication and discusses possible future improvement of medical therapies.Present medical counter-measures against nerve agents are not sufficiently effective particularly in protecting the brain. Therefore, new and more effective countermeasures must be developed to enable better medical treatment of civilians and military personnel following exposure to nerve agents. Therefore, it is important with an enhanced effort by all countries, to improve and increase research in medical countermeasures, in the development of protective equipment, and in carrying out regular training of medical and emergency personnel as well as of military nuclear, biological, or chemical (NBC) units. Only then will nations be able to reduce the risk from and prevent the use of such weapons of mass destruction (WMD).


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A46.3-A47
Author(s):  
Thomas J Keegan ◽  
Lucy M Carpenter ◽  
Claire Brooks ◽  
Toby Langdon ◽  
Katherine M Venables

BackgroundThe effects of exposure to chemical warfare agents in humans are topical. Porton Down, near Salisbury, is the UK’s centre for research on chemical warfare. Since WWI, a programme of experiments involving approximately 30 000 participants drawn from the UK armed services has been undertaken there.ObjectivesOur aim is to report on exposures to nerve agents, particularly sarin, using detailed exposure data in a cohort of servicemen who attended Porton Down.MethodsWe have used existing data on exposures to UK servicemen who attended the human volunteer programme at Porton Down to examine exposures to nerve agents in general and to sarin in particular.ResultsSix principal nerve agents were tested on humans, all between 1945 and 1987. Of the 4299 nerve agent tests recorded, 3511 (82%) were with sarin, most commonly in an exposure chamber, with inhalation being the commonest exposure route (85%). Biological response to sarin exposure was expressed as percentage change in cholinesterase activity and, less commonly, change in pupil size. For inhalation tests, assessed by changes in red blood cell cholinesterase median inhibition for was 41% (IQR 24%–51%), with a maximum of 87%. For dermal exposures, assessed by changes in unspecified cholinesterase, median inhibition was 22% (IQR 10%–37%), with a maximum inhibition of 99%. There was a clear association between increasing exposure to sarin and depression of cholinesterase activity but the strength f the association varied by exposure route and the presence of chemical or physical protection. Pupil size decreased with increased exposure but this relationship was less apparent when protection was present.ConclusionsThese results, drawn from high quality experimental data, offer a unique insight into the effects of these chemical agents on humans.AcknowledgementWe thank Nicola Fear and Gemma Archer, our collaborators in new work on these data, for their input.


1992 ◽  
Vol 21 (7) ◽  
pp. 865-871 ◽  
Author(s):  
Frederick R Sidell ◽  
Jonathan Borak

2021 ◽  
Vol 22 (15) ◽  
pp. 8152
Author(s):  
Pauline Jacquet ◽  
Benjamin Rémy ◽  
Rowdy P. T. Bross ◽  
Marco van Grol ◽  
Floriane Gaucher ◽  
...  

Organophosphorus nerve agents (OPNAs) are highly toxic compounds inhibiting cholinergic enzymes in the central and autonomic nervous systems and neuromuscular junctions, causing severe intoxications in humans. Medical countermeasures and efficient decontamination solutions are needed to counteract the toxicity of a wide spectrum of harmful OPNAs including G, V and Novichok agents. Here, we describe the use of engineered OPNA-degrading enzymes for the degradation of various toxic agents including insecticides, a series of OPNA surrogates, as well as real chemical warfare agents (cyclosarin, sarin, soman, tabun, VX, A230, A232, A234). We demonstrate that only two enzymes can degrade most of these molecules at high concentrations (25 mM) in less than 5 minutes. Using surface assays adapted from NATO AEP-65 guidelines, we further show that enzyme-based solutions can decontaminate 97.6% and 99.4% of 10 g∙m−² of soman- and VX-contaminated surfaces, respectively. Finally, we demonstrate that these enzymes can degrade ethyl-paraoxon down to sub-inhibitory concentrations of acetylcholinesterase, confirming their efficacy from high to micromolar doses.


2021 ◽  
Author(s):  
Vinod Kumar

In view of the strong need to strengthen the national security arising from chemical terrorism, a rapid, specific, and onsite detection of chemical warfare agents (CWA) employing a simple and...


Author(s):  
Gagan R

Abstract: The recent poisoning of Russian opposition figure and critic Alexei Navalny on August 20th , 2020 with a Soviet-era Novichok nerve agent reminded the world of the use of chemical agents, especially nerve agents to eliminate individual targets or for mass destruction. Nerve agents are a class of organophosphorus compounds. Soman, Sarin, Tabun, Cyclosarin, VX are a few examples of nerve agents. Nerve agents affect a person by disrupting the mechanism by which nerve signals are passed in the body. They inhibit the action of acetylcholinesterase enzyme which is responsible for the breakdown of acetylcholine neurotransmitters leading to accumulation of acetylcholine in the body. Nerve agents have a range of chemical effects on the eye, gastro-intestinal (GI) tract, Central nervous system (CNS), Respiratory system, Cardiovascular system and Neurological system. The management of nerve agent poisoning is done by administering Atropine or Pralidoxime chloride or also by administering anticonvulsants like Benzodiazepines or Diazepam. This review presents all such detailed information on this class of chemical Warfare agents. Keywords: Chemical Warfare Weapon, Nerve Agents, Acetylcholinesterase, Toxicity, Instrumentation


2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
N Iwasaki ◽  
S Miyamoto ◽  
K Ishii ◽  
T Takeda ◽  
T Ohto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document