scholarly journals Pre-S2 Mutant-Induced Mammalian Target of Rapamycin Signal Pathways as Potential Therapeutic Targets for Hepatitis B Virus-Associated Hepatocellular Carcinoma

2017 ◽  
Vol 26 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Chiao-Fang Teng ◽  
Han-Chieh Wu ◽  
Woei-Cherng Shyu ◽  
Long-Bin Jeng ◽  
Ih-Jen Su

Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Pre-S2 mutant represents an HBV oncoprotein that is accumulated in the endoplasmic reticulum (ER) and manifests as type II ground glass hepatocytes (GGHs). Pre-S2 mutant can induce ER stress and initiate multiple ER stress-dependent or -independent cellular signal pathways, leading to growth advantage of type II GGH. Importantly, the mammalian target of rapamycin (mTOR) signal pathways are consistently activated throughout the liver tumorigenesis in pre-S2 mutant transgenic mice and in human HCC tissues, leading to hepatocyte proliferation, metabolic disorders, and HCC tumorigenesis. In this review, we summarize the pre-S2 mutant-induced mTOR signal pathways and its implications in HBV-related HCC tumorigenesis. Clinically, the presence of pre-S2 mutant exhibits a high resistance to antiviral treatment and carries a high risk of HCC development in patients with chronic HBV infection. Targeting at pre-S2 mutant-induced mTOR signal pathways may thus provide potential strategies for the prevention or therapy of HBV-associated HCC.

Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 945 ◽  
Author(s):  
Chiao-Fang Teng ◽  
Han-Chieh Wu ◽  
Ih-Jen Su ◽  
Long-Bin Jeng

Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), the leading cause of cancer-related death worldwide. Despite progress in the prevention and therapy of HCC, high incidence and recurrence rates of HCC remain big threats, resulting in poor patient survival. Effective biomarkers and targets of HCC are therefore urgently needed for better management and to improve patient outcomes. Pre-S mutants have been well demonstrated as HBV oncoproteins that play important roles in HCC development through activation of multiple oncogenic signal pathways in hepatocytes, in vitro and in vivo. The presence of pre-S mutants in patients with chronic HBV infection and HBV-related HCC has been associated with a significantly higher risk of HCC development and recurrence after curative surgical resection, respectively. In this review, we summarize the roles of pre-S mutants as biomarkers for predicting HBV-related HCC development and recurrence, and highlight the pre-S mutants-activated oncogenic signal pathways as potential targets for preventing HBV-related HCC development.


2019 ◽  
Vol 20 (3) ◽  
pp. 597 ◽  
Author(s):  
Yu-Min Choi ◽  
So-Young Lee ◽  
Bum-Joon Kim

Hepatitis B virus (HBV) infection is a global health problem that causes a wide range of pathological outcomes, including cirrhosis and hepatocellular carcinoma (HCC). Endoplasmic reticulum (ER) stress induction by HBV infection has been implicated in liver carcinogenesis and disease progression with chronic inflammation via enhanced inflammation, oxidative stress-mediated DNA damage, and hepatocyte proliferation. In the natural course of HBV infection, the accumulation of naturally occurring mutations in the HBV genome can generate several mutant types of HBV-encoded proteins, including three different proteins in the S ORF (SHBs, MHBs, and LHBs) and HBcAg in the C ORF, which could contribute to enhanced ER stress in infected hepatocytes mainly via increased ER accumulation of mutant proteins. However, it seems that there may be distinct capacity and pathway in ER stress-induction and distinct resulting clinical outcomes between HBV variants. In addition, the role of HBxAg mutations in ER stress remains unknown. However, it has been reported that HBxAg itself could exert ER stress in infected cells, resulting in HCC generation in chronic HBV patients. To date, review papers regarding ER stress-mediated HBV mutation have been limited into a specific mutation type: preS2 deletion. So, in this review, we will discuss details about various mutation types in all four regions of the HBV genome (preS1, preS2, S, and C) related to ER stress and their distinct ER stress mechanisms and clinical outcomes in terms of mutation types.


2012 ◽  
Vol 18 (4) ◽  
pp. 378-387 ◽  
Author(s):  
Xinghui Zhao ◽  
Zhanzhong Zhao ◽  
Junwei Guo ◽  
Peitang Huang ◽  
Xudong Zhu ◽  
...  

Chronic hepatitis B virus (HBV) infection is an independent risk factor for the development of hepatocellular carcinoma (HCC). The HBV HBx gene is frequently identified as an integrant in the chromosomal DNA of patients with HCC. HBx encodes the X protein (HBx), a putative viral oncoprotein that affects transcriptional regulation of several cellular genes. Therefore, HBx may be an ideal target to impede the progression of HBV infection–related HCC. In this study, integrated HBx was transcriptionally downregulated using an artificial transcription factor (ATF). Two three-fingered Cys2-His2 zinc finger (ZF) motifs that specifically recognized two 9-bp DNA sequences regulating HBx expression were identified from a phage-display library. The ZF domains were linked into a six-fingered protein that specified an 18-bp DNA target in the Enhancer I region upstream of HBx. This DNA-binding domain was fused with a Krüppel-associated box (KRAB) transcriptional repression domain to produce an ATF designed to downregulate HBx integrated into the Hep3B HCC cell line. The ATF significantly repressed HBx in a luciferase reporter assay. Stably expressing the ATF in Hep3B cells resulted in significant growth arrest, whereas stably expressing the ATF in an HCC cell line lacking integrated HBx (HepG2) had virtually no effect. The targeted downregulation of integrated HBx is a promising novel approach to inhibiting the progression of HBV infection–related HCC.


2017 ◽  
Author(s):  
◽  
Andrew Douglas Huber

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Chronic hepatitis B virus (HBV) infection leads to liver disease, cirrhosis, and hepatocellular carcinoma. Globally, an estimated 50% of all hepatocellular carcinoma cases are linked to chronic HBV infection. More than 240 million people are chronically infected, and there are 0.5-1 million deaths per year due to HBVrelated liver conditions. HBV treatment options rarely cure infections and are associated with adverse side effects that often outweigh the potential benefits of treatment. New treatments, therefore, are highly desired for HBV therapy. Towards this goal, we have developed novel compounds targeting two viral targets and assessed the mechanisms of action by which these compounds act. We have developed systems for the discovery and evaluation of compounds that inhibit 2 distinct steps in the HBV life cycle. Using these systems, we have developed potent inhibitors of HBV replication that have potential to become clinically used HBV drugs. Furthermore, we have used our methods to evaluate which properties of these compounds are likely to result in better viral inhibition. The work described in this thesis has led to at least 2 new compound groups for potential use as HBV antivirals and provides insight into mechanisms by which potent antivirals can be achieved.


2018 ◽  
Vol 12 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Arnolfo Petruzziello

Introduction:Hepatocellular carcinoma (HCC) is one of the most prevalent primary malignant tumors and accounts for about 90% of all primary liver cancers. Its distribution varies greatly according to geographic location and it is more common in middle and low- income countries than in developed ones especially in Eastern Asia and Sub Saharan Africa (70% of all new HCCs worldwide), with incidence rates of over 20 per 100,000 individuals.Explanation:The most important risk factors for HCC are Hepatitis B Virus (HBV) infection, Hepatitis C Virus (HCV) infection, excessive consumption of alcohol and exposition to aflatoxin B1. Its geographic variability and heterogeneity have been widely associated with the different distribution of HBV and HCV infections worldwide.Chronic HBV infection is one of the leading risk factors for HCC globally accounting for at least 50% cases of primary liver tumors worldwide. Generally, while HBV is the main causative agent in the high incidence HCC areas, HCV is the major etiological factor in low incidence HCC areas, like Western Europe and North America.Conclusion:HBV-induced HCC is a complex, stepwise process that includes integration of HBV DNA into host DNA at multiple or single sites. On the contrary, the cancerogenesis mechanism of HCV is not completely known and it still remains controversial as to whether HCV itself plays a direct role in the development of tumorigenic progression.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Han Shi ◽  
Hongyan He ◽  
Suvash Chandra Ojha ◽  
Changfeng Sun ◽  
Juan Fu ◽  
...  

Abstract Background: It has been reported that polymorphisms of signal transducer and activator of transcription (STAT) 3 and STAT4 might be associated with susceptibility to hepatitis B virus (HBV) infection and risk of chronic hepatocellular carcinoma (HCC). Owing to limitation of sample size and inconclusive results, we conducted a meta-analysis to clarify the association. Methods: We identified relevant studies by a systematic search of Medline/PubMed, Embase, Web of Science and the Cochrane Library up to 20 February 2019. The strength of the association measured by odds ratios (OR) with 95% confidence intervals (CIs) was studied. All the statistical analyses were conducted based on Review Manager 5.3 software. Results: A total of 5242 cases and 2717 controls from five studies were included for the STAT3 polymorphism, 5902 cases and 7867 controls from nine studies for the STAT4 polymorphism. Our results suggested that STAT3 rs1053004 polymorphism was a significant risk factor of chronic HBV infection (C vs. T: OR = 1.17, 95% CI: 1.07–1.29, PA=0.0007; CC + CT vs. TT: OR = 1.38, 95% CI: 1.09–1.76, PA=0.008). Validation with all the genetic models revealed that rs7574865 polymorphism of STAT4 gene was closely associated with chronic HBV infection (PA<0.01) and chronic hepatitis B (CHB)-related HCC (PA<0.05). Meanwhile, the authenticity of the above meta-analysis results was confirmed by trial sequential analysis (TSA). Conclusions: The meta-analysis showed that STAT3 rs1053004 polymorphism may be the risk for developing chronic HBV infection but not associated with HCC. The present study also indicates that STAT4 rs7574865 polymorphism increased the risk of chronic HBV infection and HCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chao-Ming Hung ◽  
Wei-Chien Huang ◽  
Hsiao-Lin Pan ◽  
Pei-Hsuan Chien ◽  
Chih-Wen Lin ◽  
...  

Hepatitis B virus- (HBV-) associated hepatocellular carcinoma (HCC) is the most common type of liver cancer. However, the underlying mechanism of HCC tumorigenesis is very complicated and HBV-encoded X protein (HBx) has been reported to play the most important role in this process. Activation of downstream signal pathways of epidermal growth factor receptor (EGFR) family is known to mediate HBx-dependent HCC tumor progression. Interestingly, HER2 (also known as ErbB2/Neu/EGFR2) is frequently overexpressed in HBx-expressing HCC patients and is associated with their poor prognosis. However, it remains unclear whether and how HBx regulates HER2 expression. In this study, our data showed that HBx expression increased HER2 protein level via enhancing its mRNA stability. The induction of RNA-binding protein HuR expression by HBx mediated the HER2 mRNA stabilization. Finally, the upregulated HER2 expression promoted the migration ability of HBx-expressing HCC cells. These findings deciphered the molecular mechanism of HBx-mediated HER2 upregulation in HBV-associated HCC.


2013 ◽  
Vol 20 (1) ◽  
pp. 127-127 ◽  
Author(s):  
Jong-Han Lee ◽  
Kwang-Hyub Han ◽  
Jae Myun Lee ◽  
Jeon Han Park ◽  
Hyon-Suk Kim

Sign in / Sign up

Export Citation Format

Share Document