Metabolism of Wheat Dextrin, Partially Hydrolysed Guar Gum and Inulin by Bifidobacterium lactis or Lactobacillus acidophilus in an In Vitro Gut Model Fermentation System

2021 ◽  
Vol 16 (1) ◽  
pp. 22-30
Author(s):  
S. Pyle ◽  
R.A. Rastall ◽  
G.R. Gibson

Combining the fibres wheat dextrin (WD), partially hydrolysed guar gum (PHGG) and inulin with probiotics Lactobacillus acidophilus NCFM (NCFM) or Bifidobacterium lactis HN019 (HN019) may enhance bacterial metabolites leading to a healthier gut community. The aim of this study was to determine whether WD, PHGG and inulin or NCFM and HN019 alone generate a more favourable gut bacterial community than when combined. A secondary aim was to assess organic acid production following prebiotics, probiotics and synbiotic fermentation. An in vitro gut model batch culture fermentation was run for 72h. Samples were collected for bacterial enumeration (fluorescent in situ hybridisation combined with flow cytometry) and organic acid production (gas chromatography). Inulin and HN019 combination significantly increased bifidobacteria compared to inulin alone. Additionally, a significant increase in lactic acid bacteria, Bacteroides and Clostridium coccoides-Eubacterium rectale was found in the inulin containing probiotic vessels. The WD and PHGG vessels combined with the probiotic did not show any alteration in bacterial metabolism compared to the dietary fibres alone. In conclusion, synbiotic inulin combined with either HN019 or NCFM may help to enhance bacterial metabolites and cross-feeding to lead to a prolonged elevation in Bifidobacterium spp., and lactic acid bacteria.

2019 ◽  
Vol 687 ◽  
pp. 341-347 ◽  
Author(s):  
Quyen Ngoc Minh Tran ◽  
Hiroshi Mimoto ◽  
Mitsuhiko Koyama ◽  
Kiyohiko Nakasaki

2012 ◽  
Vol 3 (1) ◽  
pp. 23-32 ◽  
Author(s):  
A. Do Carmo ◽  
M. De Oliveira ◽  
D. Da Silva ◽  
S. Castro ◽  
A. Borges ◽  
...  

There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh – lactate dehydrogenase, adhE – Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 – catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property for pizza cheeses.


1973 ◽  
Vol 53 (1) ◽  
pp. 81-85 ◽  
Author(s):  
T. R. DAVIDSON ◽  
K. R. STEVENSON ◽  
J. BUCHANAN-SMITH

Early bloom alfalfa (Medicago sativa cult Saranac), at 22.5% dry matter, was harvested with a forage harvester. Formic acid (85% solution) and formalin (37.5% solution) and various combinations of mixtures were applied to the forage on a fresh weight basis at rates of 0.33, 0.50, and 0.66%. A sample of the treated material was ensiled in test tube silos fitted with fermentation locks. At various time intervals, analyses were made to follow the patterns of organic acid production. In untreated silage, the pH dropped to 4.3 with high lactic acid production, but after 39 days, the pH began to rise as lactic acid was degraded by Clostridia. Formic acid at 0.33 and 0.50% delayed but did not prevent either lactic acid production or subsequent degradation. Formic acid (0.66%) and all rates of formalin depressed lactic acid production. The production of butyric, isobutyric, and isovaleric acids was depressed to low levels only at the 0.66% rate of treatments. Formic acid was more effective than formalin in depressing volatile fatty acids. The formic–formalin mixtures gave results intermediate to separate applications of formic acid and formalin for all parameters analyzed.


1967 ◽  
Vol 34 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Ellen I. Garvie

SummaryA study of the production of L(+) and D(−) lactic acid in cultures of DL forming lactic acid bacteria has shown that they can be divided into 2 groups. The first includes the thermobacteria and Pediococcus cerevisiae in which the percentage of L(+) lactic acid is high initially but decreases as the cultures grow. The second includes Lactobacillus plantarum and the heterofermentative lactobacilli and in cultures of these species the percentage of L(+) acid changes little during growth and is generally below 50% of the total.In a strain of Lactobacillus acidophilus it has been found that if the pH is kept constant during growth the proportion of L(+) lactic acid decreased. However, when acid production stopped the proportion of total acid which is the L(+) isomer is greater than the proportion at the same stage of development in cultures where the pH was not adjusted. Cells harvested from young cultures formed more L(+) acid than cells harvested from older cultures.There is some evidence that the composition of the medium can affect the ratio of L(+):D(−) lactic acid.


2015 ◽  
Vol 20 (4) ◽  
pp. 187 ◽  
Author(s):  
Subagiyo Subagiyo ◽  
Sebastian Margino ◽  
Triyanto Triyanto ◽  
Wilis Ari Ari Setyati1,2

Bakteri asam laktat telah lama dikembangkan sebagai probiotik. Penentuan kondisi lingkungan yang optimum untuk pertumbuhan sel serta asam organik memberikan gambaran aktivitas optimum untuk kinerja probiotik baik dalam sistem fisiologi inang maupun dalam sistem bioproses untuk produksi sel dan metabolit. Penelitian ini bertujuan untuk mengetahui pengaruh faktor lingkungan (pH, suhu dan salinitas) terhadap pertumbuhan dan produksi total asam organik tiga isolat bakteri asam laktat yang telah diseleksi dari intestinum udang penaeid. Eksperimen menggunakan  medium deMan, Rogosa and Sharpe (MRS) cair. Perlakuan pH awal meliputi  nilai pH 4, 5 dan 6. Perlakuan suhu meliputi suhu 25, 30 dan 35OC serta perlakuan salinitas  meliputi salinitas 0,75 %, 1,5 % dan 3 %.  Setiap interval 6 jam dilakukan pengambilan sampel kultur bakteri dan penghitungan pertumbuhan berdasarkan perubahan optical density (pada panjang gelombang 600 nm) sedangkan produksi asam laktat dianalisis dengan metode titrimetrik menggunakan NaOH 1 N sebagai larutan titrasinya. Berdasarkan hasil penelitian disimpulkan bahwa suhu, pH awal dan salinitas berpengaruh terhadap pertumbuhan dan produksi asam organik. Nilai kondisi lingkungan terbaik untuk pertumbuhan dapat berbeda dengan nilai terbaik untuk produksi asam organic. Hal ini ditunjukan oleh nilai laju pertumbuhan dan produksi asam laktat tertinggi dari tiga isolat uji terjadi pada suhu, pH awal dan salinitas yang berbeda.  Isolat L12 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 0,75%. Isolat L14 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 1.5%. Isolat L 21 tumbuh optimum pada suhu 30 oC, pH awal 6 dan salinitas 1.5%. Kata kunci: bakteri asam laktat, suhu, pH, salinitas, asamorganik, pertumbuhan, Lactic acid bacteria are widely distributed in intestinal tracts of various animals where they live as normal flora.Strains of lactic acid bacteria are the most common microbes employed as probiotics, The optimum condition for growth are important to mass production and to determined parameters most suitable for growth. The effects of  temperature, pH and salinity on the growth and production of lactic acid from the three shrimp intestinal lactic acid bacteria isolates were conducted using bacth culture in a flask. These variables for growth were determined based on the growth curves and lactic acid production. Data from the flask batch experiment demonstrated that the best initial pH and temperature  for growth of isolat L12 ,L14 and L21 were found to be pH 6 and 30 OC.  Salinity (NaCl concentration) 0,75% were the best for growth of isolat L12. Salnity  1,5 % were best for growth of isolat L14 and L21. Key words : growth, temperature, pH, salinity, lactic aid bacteria


2019 ◽  
Vol 10 ◽  
Author(s):  
Smith Etareri Evivie ◽  
Amro Abdelazez ◽  
Bailiang Li ◽  
Xin Bian ◽  
Wan Li ◽  
...  

2019 ◽  
Vol 69 (13) ◽  
pp. 1445-1459 ◽  
Author(s):  
Andréia de Oliveira dos Santos ◽  
Carla Luiza da Silva Ávila ◽  
Célia Soares ◽  
Beatriz Ferreira Carvalho ◽  
Rosane Freitas Schwan ◽  
...  

Abstract Purpose The diversity of lactic acid bacteria (LAB) in silages produced in warm climate countries is not well known. This study aimed to identify and characterise the metabolic and genotypic aspects of autochthonous LAB isolated from corn silage produced in the state of Minas Gerais, Brazil. Methods Eighty-eight LAB were isolated. To evaluate their performance at the strain level, all isolates were distinguished among strains using random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) and repetitive extragenic palindromic PCR (REP-PCR) techniques. The organic acid and ethanol production were determined by high-performance liquid chromatography (HPLC). Result The fingerprints obtained by RAPD-PCR with a M13 primer were more discriminatory than those obtained with the REP-PCR technique using a (GACA)4 primer. Moreover, 28 representative isolates were identified as Lactobacillus acidophilus, L. buchneri, L. casei, L. diolivorans, L. hilgardii, L. paracasei, L. parafarraginis, L. plantarum, L. rhamnosus, L. zeae and Pediococcus acidilactici. Different fingerprinting profiles between isolates within the same species were observed. However, some strains isolated from different silages showed the same band profile, thus suggesting the presence of clusters with high similar fingerprints in silages from various regions. Conclusion A variation in LAB diversity was observed in the silages of the evaluated regions, with L. rhamnosus and L. buchneri showing the highest distribution. Differences in organic acid production were observed among the strains belonging to the same species. This research contributes to a better understanding of the LAB community present in corn silage produced in warm climates. These strains will be studied as potential silage starters.


Sign in / Sign up

Export Citation Format

Share Document