Reuse of Drainage Water for Irrigation: Results of Imperial Valley Study: II. Soil Salinity and Water Balance

Hilgardia ◽  
1988 ◽  
Vol 56 (5) ◽  
pp. 17-44 ◽  
Author(s):  
James D. Rhoades ◽  
Frank T. Bingham ◽  
John Letey ◽  
Paul J. Pinter ◽  
Robert D. Lemert ◽  
...  
2018 ◽  
Vol 61 (5) ◽  
pp. 1619-1626
Author(s):  
Pingjin Jiao ◽  
Yingduo Yu ◽  
Di Xu

Drainage water reuse has the potential to supplement irrigation, reduce drainage, and alleviate the area source pollution caused by agricultural drainage. This study aimed to evaluate the effects of influencing factors of drainage water reuse on supplementary irrigation and drainage reduction rates. To evaluate the effects, a water balance model was constructed to describe the irrigation water requirement and drainage water storage of a pond. The irrigation water requirement was calculated using the Penman-Monteith equation and the crop coefficient method while considering field leakage and effective rainfall; the drainage water volume was calculated using the improved Soil Conservation Service (SCS) model. The model was applied to the rice planting area in the Zhanghe Reservoir Irrigation District. Simulation results show that the supplementary irrigation and drainage reduction rates are primarily affected by the ratio of irrigation to drainage areas (RID), the pond volume ratio (PV), and the initial storage ratio (PSi); interactions among the three parameters are also observed. The RID, PV, and PSi contribute approximately 4:3:1 to the average variations in the supplementary irrigation rate. The supplementary irrigation rate increases with the values of PV and PSi but decreases with the increases of RID. For the drainage reduction rate variation, the average contribution percentages of PV and RID are 70% and 10%, respectively. Increasing PV and RID or reducing PSi enhances the drainage reduction rate. Adjusting the combination of parameters PV and RID can simultaneously maximize the supplementary irrigation and drainage reduction rates. Keywords: Drainage reduction, Drainage water reuse, Pond, Supplementary irrigation, Water balance model.


1989 ◽  
Vol 16 (1-2) ◽  
pp. 25-36 ◽  
Author(s):  
J.D. Rhoades ◽  
F.T. Bingham ◽  
J. Letey ◽  
G.J. Hoffman ◽  
A.R. Dedrick ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mufeed Batarseh

A leaching experiment of calcareous saline-sodic soil was conducted in Jordan Valley and aimed to reduce the soil salinity ≤ 4.0 dS m−1. The quantification of salt removal from the effective root zone was done using three treatment scenarios. Treatment A contained soil amended with gypsum leaching with fresh water (EC = 1.1 dS m−1). Treatments B and C contained nonamended soil, but B was leached with fresh water only while treatment C’s soil was washed with saline agricultural drainage water (EC = 8 dS m−1) at the start of the experiment and continued with fresh water to reach the desired soil salinity. All treatments were able to reduce the soil salinity to the desired level at the end of the experiment; however, there were clear differences in the salt removal efficiencies among the treatments which were attributed to the presence of direct source of calcium ion. The soil amended with gypsum caused a substantial decline in soil salinity and drainage water’s electrical conductivity and drained the water twice as fast as the nonamended soil. It was found that utilizing agricultural drainage water and gypsum as a soil amendment for calcareous saline-sodic soil reclamation can beneficially contribute to sustainable agricultural management in the Jordan Valley.


Hilgardia ◽  
1988 ◽  
Vol 56 (5) ◽  
pp. 1-16 ◽  
Author(s):  
James D. Rhoades ◽  
Frank T. Bingham ◽  
John Letey ◽  
Allan R. Dedrick ◽  
Maura Bean ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 165
Author(s):  
Raúl Andrés ◽  
Pablo Martín-Ramos ◽  
José Antonio Cuchí

In the current context of climate change, there is growing interest in the optimization of water management in irrigated areas, in semi-arid environments. The design of adequate adaptation and mitigation measures requires specific data at different scales of the water management hierarchy, up to basin level. In this work, the irrigation and drainage system of San Pedro de Castelflorite Irrigation Community (Huesca province, NE Spain), first set up as a flood irrigation system around 1970 and then modernized to sprinkler irrigation around 2008, was studied over two irrigation seasons. The land in this basin, with a surface of 11,450 ha, is affected by severe sodicity problems, which impedes cultivation in large areas. Most of the drainage water discharges into Clamor Vieja ravine, in which the quantity and quality of drainage, using water, salt, and nitrogen balances, were monitored. The water regime was found to be essentially regulated by irrigation. From the water balance, the consumed and the recoverable fractions were estimated at 76% and 23%, respectively, and the depleted beneficial fraction for the irrigated area at 73%. A predominance of salt dissolution processes over precipitation processes was found, with salt exports of approximately 2000 kg ha−1·year−1. The nitrogen exported by the drainage water was 7 kg N·ha−1·year−1. This value, remarkably lower than those reported for nearby basins in the central Ebro valley, can be attributed to the flooding of rice fields and to the low permeability of the soils present in this basin, which would hamper nitrate washing through the soil profile.


2009 ◽  
Vol 25 (4) ◽  
pp. 507-514 ◽  
Author(s):  
K. D. Riley ◽  
M. J. Helmers ◽  
P. A. Lawlor ◽  
R. Singh

2015 ◽  
Vol 15 (4) ◽  
pp. 675-682 ◽  
Author(s):  
Karim Ghorbani ◽  
Aimrun Wayayok ◽  
Masumeh Abbaszadeh ◽  
Ahmad Fikri

A high groundwater table and soil salinity, especially in arid regions, often cause serious problems for agriculture. In irrigated areas the subsurface drainage can be an effective technique to lower the depth of the groundwater table and reduce soil salinity. In drainage systems, lateral pipes are designed to collect the free water from soil and convey it into collectors. In other words, collectors are commonly designed to convey drainage water from laterals downstream, while the laterals play an additional role in removing excess water from irrigated land. The present research was conducted to investigate the effects of collectors in discharging excess water from soil using a laboratory-tank model. The results indicated that on average 24% of drainage water was directly discharged through the collector pipe when the hydraulic gradient of the flow was sloped toward the collector pipe. Hence, it was concluded that, with proper monitoring, collectors were capable of reducing the drainage coefficient from an average of 32.5 to 24.5 mm/day, while drain spacing of the laterals can increase the results by about 15% in comparison with the present situation.


Sign in / Sign up

Export Citation Format

Share Document