scholarly journals Experimental Research Regarding the Plastic Flow of Aluminium Alloy EN AW-7075 in Closed-die Forging Without Flash

2017 ◽  
Vol 54 (2) ◽  
pp. 326-330
Author(s):  
Maria Kapustova ◽  
Jozef Bilik ◽  
Martin Sahul ◽  
Martin Ridzon ◽  
Cristina Stefana Miron Borzan

The paper describes an innovative method of production of non-ferrous drop forgings, a manufacturing method based on closed die forging without flash. From economic point of view, this method is very interesting for production, due to small quantity of lost material. The research was verified using DEFORM 3D software. In this way can be better understood the principles of forging process and can be analyzed the plastic flow of the material into the die cavity. This experiment was successfully performed at laboratory conditions and the results will be applied in practice.

2008 ◽  
Vol 575-578 ◽  
pp. 517-524 ◽  
Author(s):  
Yao Zong Zhang ◽  
Jian Bo Huang ◽  
Xue Lin ◽  
Quan Shui Fang

The cold closed-die forging process of the gear is a kind of new technique of the precise forming of gear in recent years. In this paper, the cold closed-die forging process of differential satellite gear in car was analyzed through numerical simulation method. Forming mold was designed with Pro/E Wildfire2.0 which included four components : upper punch, lower punch, tooth shape upper die and lower die for Normal Cone. The three-dimensional models of satellite bevel gear mould were built and imported into numerical simulation software DEFORM-3D. Because the gear has the uniform circumferential features, in order to save time and improve the accuracy, only one tooth was simulated, and the full simulation outcome of 10 teeth was mirrored from this one. Through the numerical simulation analysis of DEFORM-3D, the instantaneous deformation and stress filed were gained. Forming defects were forecasted and the cold closed-die forging rule for satellite gear used in car was obtained which can provide effective references for no-flash cold forging process of planet bevel gear and the mold design.


Author(s):  
I. L. Konstantinov ◽  
P. G. Potapov ◽  
S. B. Sidelnikov ◽  
D. S. Voroshilov ◽  
Yu. V. Gorokhov ◽  
...  

The process of hot die forging of AK4-1 aluminum alloy billets for the piston of an internal combustion engine (ICE) for an unmanned aerial vehicle (UAV) was simulated using the Deform-3D software package. The object of research was an ICE piston mounted on one of the UAV types of Russian production. Simulation was performed using the following parameters: tooling and billet temperature was 450 °C, ambient temperature was 20 °C, punch speed was 5 mm/s, and Siebel friction index was 0.4. Rigid plastic medium was chosen as a material model. The number of elements (6000) was selected so that at least 3 elements fit in the narrowest section of the part. Thus, as illustrated by the piston die forging, computer simulation in the Deform-3D software makes it possible to develop hot die forging processes for making aluminum alloy billets for UAV ICE pistons. At the same time, computer simulation can be used to evaluate the power parameters of the hot die forging process, study the nature of billet forming in die forging, make necessary adjustments to the virtual process, and develop the design of a die forging tool in order to select the most effective process solutions when designing a real process. The described computer simulation technique can be extended to other aluminum alloy die forgings.


2022 ◽  
Author(s):  
Ou Zhang ◽  
Hongjun Hu ◽  
Huiling Zhang ◽  
Hui Zhao ◽  
Ding-fei Zhang ◽  
...  

Abstract To research the influences of process parameters on a special extrusion-shearmanufacture method for magnesium alloy rods, deform-3d software with finite elementsimulations has been used to analyze the material flows of deformed magnesium alloysAZ31B during the extrusion-shear (ES) process, as well as the grain sizes anddistribution of extrusion loads, stresses and strains, and blank temperatures. Temperaturefields, stress fields, strain fields and temperature fields varying with different blankpreheating temperatures, extrusion speed and extrusion ratios were simulated. Influences ofdifferent extrusion conditions and different die structures on microstructures of rods prepared by ES process has been researched. Extrusion forces decrease with the increasing extrusion temperatures, decreasing extrusion ratios, increasing die channel angles and decreasing friction coefficients. The flow velocities of metal in the ES die increase with development of ES process. Increasing the channel angles and reducing the friction factors would increase the outflow velocities of metal, but it has little effect on the uniformity of metal flow. The increase in friction and extrusion speed would increase the temperatures of the ES die. The ES process can prepare finer and more uniform microstructures than those prepared by direct extrusion under the same conditions.


2003 ◽  
Vol 42 (2) ◽  
pp. 170-172
Author(s):  
Mir Annice Mahmood

To implement any successful policy, research about the subject-matter is essential. Lack of knowledge would result in failure and, from an economic point of view, it would lead to a waste of scarce resources. The book under review is essentially a manual which highlights the use of research for development. The book is divided into two parts. Part One informs the reader about concepts and some theory, and Part Two deals with the issue of undertaking research for development. Both parts have 11 chapters each. Chapter 1 asks the basic question: Is research important in development work? The answer is that it is. Research has many dimensions: from the basic asking of questions to the more sophisticated broad-based analysis of policy issues. The chapter, in short, stresses the usefulness of research which development workers ignore at their own peril.


2014 ◽  
Vol 30 (2) ◽  
pp. 113-126 ◽  
Author(s):  
Dominic Detzen ◽  
Tobias Stork genannt Wersborg ◽  
Henning Zülch

ABSTRACT This case originates from a real-life business situation and illustrates the application of impairment tests in accordance with IFRS and U.S. GAAP. In the first part of the case study, students examine conceptual questions of impairment tests under IFRS and U.S. GAAP with respect to applicable accounting standards, definitions, value concepts, and frequency of application. In addition, the case encourages students to discuss the impairment regime from an economic point of view. The second part of the instructional resource continues to provide instructors with the flexibility of applying U.S. GAAP and/or IFRS when students are asked to test a long-lived asset for impairment and, if necessary, allocate any potential impairment. This latter part demonstrates that impairment tests require professional judgment that students are to exercise in the case.


Author(s):  
Ramesh Raghavan

This chapter presents an overview of how D&I research can be evaluated from an economic point of view. Dissemination and implementation imposes costs upon knowledge purveyors, provider organizations, public health organizations, and payers (including governments). However, whether these added costs will result in improved service delivery and, perhaps more importantly, client outcomes and improvements in population health remain as open questions. If emerging studies reveal that defined implementation strategies are more cost effective than “usual” implementation, then policymakers and service providers will need to resource these added costs of implementation in order to assure the success and sustainability of high-quality health services over the long term.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 565
Author(s):  
Nikolaj Kaae Kirk ◽  
Clara Navarrete ◽  
Jakob Ellegaard Juhl ◽  
José Luis Martínez ◽  
Alessandra Procentese

To make biofuel production feasible from an economic point of view, several studies have investigated the main associated bottlenecks of the whole production process through approaches such as the “cradle to grave” approach or the Life Cycle Assessment (LCA) analysis, being the main constrains the feedstock collection and transport. Whilst several feedstocks are interesting because of their high sugar content, very few of them are available all year around and moreover do not require high transportation’ costs. This work aims to investigate if the “zero miles” concept could bring advantages to biofuel production by decreasing all the associated transport costs on a locally established production platform. In particular, a specific case study applied to the Technical University of Denmark (DTU) campus is used as example to investigate the advantages and feasibility of using the spent coffee grounds generated at the main cafeteria for the production of bioethanol on site, which can be subsequently used to (partially) cover the campus’ energy demands.


Sign in / Sign up

Export Citation Format

Share Document