Research Concerning the Identification of Some Parameters of a Sucker Rod Pumping Unit

2017 ◽  
Vol 68 (10) ◽  
pp. 2289-2292
Author(s):  
Dorin Badoiu ◽  
Georgeta Toma

One of the solutions to reduce the production and maintenance costs of the sucker rod pumping installations is to develop automated systems for regulating and controlling their operations. The development of these automated systems requires an attentive modeling of the dynamics of the mechanism of the pumping unit, process in which the identification of the values of the parameters involved in the calculations plays an essential role. The paper presents the manner of determining the values of some parameters of the mechanism of a C-320D-256-100 pumping unit starting from the variation on a cinematic cycle of the motor torque at the crank shaft. Simulations were performed with a computer program developed by the authors, and the experimental records were processed with the program Total Well Management.

2021 ◽  
Vol 2(73) (2) ◽  
pp. 33-39
Author(s):  
Georgeta Toma ◽  

In the paper is presented a method for obtaining the variation during a cinematic cycle of the motor torque at the crankshaft in the case of the conventional sucker rod pumping units. The calculation method has been transposed into a computer program which allows establishing the influence of different constructive and operating parameters of the pumping units on the variation of the motor torque at the crankshaft. Finally, a series of results of the simulations performed in the case of a C-640D-305-120 pumping unit are presented.


2021 ◽  
Vol 72 (2) ◽  
pp. 178-185
Author(s):  
Dorin Badoiu

The paper analyses the influence of the rotary balancing and of the combined balancing (rotary and oscillating) on the variation of the motor torque at the crankshaft and on the variation of the connection forces acting in the joints of the mechanism of the conventional pumping units. For this purpose a computer program has been developed and a series of results in the case of a C-640D-305-120 pumping unit are presented.


2018 ◽  
Vol 69 (11) ◽  
pp. 3060-3063
Author(s):  
Dorin Badoiu ◽  
Georgeta Toma

In the paper are analyzed the correlations between the experimental results obtained for the instantaneous rotation speed of the cranks shaft of a conventional sucker rod pumping installation and the speed and the acceleration at the end of the polished rod. The correlations have been established by analyzing the kinematics of the mechanism of the sucker rod pumping unit. The experimental records have been processed with the program Total Well Management. A computer program for performing the simulations has been developed by the authors using Maple programming environment.


2018 ◽  
Vol 69 (7) ◽  
pp. 1855-1859
Author(s):  
Dorin Badoiu ◽  
Georgeta Toma

It is well known that the bearings of the mechanism of the conventional pumping units are heavily loaded so that their design has to be accomplished very carefully. In this scope the values of the connection forces acting on these bearings has to be determined as accurately as possible. In the paper is presented the kinetostatic analysis of the mechanism of the conventional sucker rod pumping units, obtaining in this way the values of the connection forces in the joints and of the motor moment at the cranks shaft. For processing the experimental records it has been used the program Total Well Management. The simulations have been performed with a computer program developed by the authors using Maple programming environment.


2019 ◽  
Vol 70 (8) ◽  
pp. 2818-2821
Author(s):  
Georgeta Toma

The study of the dynamic model of the conventional sucker rod pumping units requires first determining the variation on the cinematic cycle of the synthesis parameters (the reduced moment and the reduced mass moment of inertia) and then the variation of the angular speed of the cranks, in response to the dynamic and resistant actions on the component elements that appear during operation. The paper presents the way of determining the variation on the cinematic cycle of the synthesis parameters of the dynamic model corresponding to the conventional pumping unit mechanism and of the variation of the angular speed of its cranks. The experimental records have been processed with the Total Well Management program. The simulations have been performed with a computer program developed by the author using the Maple programming environment.


2013 ◽  
Vol 10 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Kun Li ◽  
Xianwen Gao ◽  
Zhongda Tian ◽  
Zhixue Qiu
Keyword(s):  

2019 ◽  
pp. 82-91 ◽  
Author(s):  
A. S. Galeev ◽  
G. I. Bikbulatova ◽  
R. N. Suleymanov ◽  
O. V. Filimonov ◽  
S. L. Sabanov ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yuzar Aryadi ◽  
Azis Hidayat ◽  
Hilman Lazuardi ◽  
Syahroni Isnanto ◽  
Bonni Ariwibowo ◽  
...  

Abstract SCADA optimization platform is implemented to monitor and evaluate well performance. For Sucker Rod Pump, SCADA Optimization Software can be used to monitor the unit balance and gearbox torque. In some ways, not all required well configuration data for SCADA Optimization Software to do a calculation of counterbalance torque (CBT) for pumping unit balance and gearbox torque evaluation are available. Standard field Counterbalance Effect (CBE) measurement might be performed to calculate the CBT value. However, this standard procedure is limited to well that run on balance condition. For well with unbalance condition, the measured CBE needs to be adjusted by a correction factor which the equation will be presented in this paper. The corrected CBE value from the new equation is then inputted to the SCADA Optimization software to perform day-to-day real-time monitoring of pumping unit balance and gearbox torque. Derivation of the CBE correction factor equation is presented. Validation upon this new equation is performed by comparing the result with electrical measurement on the pumping unit motor. Using the calculated CBT from the new equation, SCADA Optimization Software performs gearbox torque and pumping unit balance analysis based on every collected dynamometer card. Calculated CBT from the new equation provided results in gearbox torque distribution pattern that match with measured electrical parameter distribution along the stroke. This CBT value assists SCADA optimization software to calculate pumping unit balance and gearbox torque. Alarm in the SCADA optimization software that coming from an anomaly on pumping unit balance and gearbox torque help operator to do preventive maintenance so that pumping unit component especially the gearbox could have longer run life.


Sign in / Sign up

Export Citation Format

Share Document