Air Pollutants and Meteorological Parameters Influence on PM2.5 Forecasting and Performance Assessment of the Developed Artificial Intelligence-Based Forecasting Model

2017 ◽  
Vol 68 (4) ◽  
pp. 864-868
Author(s):  
Marian Popescu ◽  
Sanda Florentina Mihalache ◽  
Mihaela Oprea

Particulate matter with an aerodynamic diameter lower than 2.5 �m (PM2.5) is one of the most important air pollutants. Current regulations impose measuring and limiting its concentrations. Thus, it is necessary to develop forecasting models programs that can inform the population about possible pollution episodes. This paper emphasizes the correlations between PM2.5 and other pollutants, and meteorological parameters. From these, nitrogen dioxide and temperature showed have the best correlations with PM2.5 and have been selected as inputs for the proposed forecasting model besides four PM2.5 concentrations (the values from current hour to three hours ago), the output of the model being the prediction of the next hour PM2.5 concentration. Two methods from artificial intelligence were used to build the forecasting model, namely adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN). The comparative study between these methods showed that the model which uses ANN have better results in terms of statistical indicators and computational effort.

2012 ◽  
Vol 1 (2) ◽  
pp. 44-59 ◽  
Author(s):  
M. S. Abdel Aziz ◽  
M. A. Moustafa Hassan ◽  
E. A. El-Zahab

This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Theddeus T Akano ◽  
Olumuyiwa S Asaolu

This paper employs artificial intelligence in predicting the stability of pipes conveying fluid. Field data was collected for different pipe structures and usage. Adaptive Neuro-Fuzzy Inference System (ANFIS) model is implemented to predict the stability of the pipe using the fundamental natural frequency at different flow velocities as the index of stability. Results reveal that the neuro-fuzzy model compares relatively well with the conventional finite element method. It was also established that a pipe conveying fluid is most stable when the pipe is clamped at both ends but least stable when it is a cantilever.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1670 ◽  
Author(s):  
Lu Minh Le ◽  
Hai-Bang Ly ◽  
Binh Thai Pham ◽  
Vuong Minh Le ◽  
Tuan Anh Pham ◽  
...  

This study aims to investigate the prediction of critical buckling load of steel columns using two hybrid Artificial Intelligence (AI) models such as Adaptive Neuro-Fuzzy Inference System optimized by Genetic Algorithm (ANFIS-GA) and Adaptive Neuro-Fuzzy Inference System optimized by Particle Swarm Optimization (ANFIS-PSO). For this purpose, a total number of 57 experimental buckling tests of novel high strength steel Y-section columns were collected from the available literature to generate the dataset for training and validating the two proposed AI models. Quality assessment criteria such as coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to validate and evaluate the performance of the prediction models. Results showed that both ANFIS-GA and ANFIS-PSO had a strong ability in predicting the buckling load of steel columns, but ANFIS-PSO (R2 = 0.929, RMSE = 60.522 and MAE = 44.044) was slightly better than ANFIS-GA (R2 = 0.916, RMSE = 65.371 and MAE = 48.588). The two models were also robust even with the presence of input variability, as investigated via Monte Carlo simulations. This study showed that the hybrid AI techniques could help constructing an efficient numerical tool for buckling analysis.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3110
Author(s):  
Konstantinos V. Blazakis ◽  
Theodoros N. Kapetanakis ◽  
George S. Stavrakakis

Electric power grids are a crucial infrastructure for the proper operation of any country and must be preserved from various threats. Detection of illegal electricity power consumption is a crucial issue for distribution system operators (DSOs). Minimizing non-technical losses is a challenging task for the smooth operation of electrical power system in order to increase electricity provider’s and nation’s revenue and to enhance the reliability of electrical power grid. The widespread popularity of smart meters enables a large volume of electricity consumption data to be collected and new artificial intelligence technologies could be applied to take advantage of these data to solve the problem of power theft more efficiently. In this study, a robust artificial intelligence algorithm adaptive neuro fuzzy inference system (ANFIS)—with many applications in many various areas—is presented in brief and applied to achieve more effective detection of electric power theft. To the best of our knowledge, there are no studies yet that involve the application of ANFIS for the detection of power theft. The proposed technique is shown that if applied properly it could achieve very high success rates in various cases of fraudulent activities originating from unauthorized energy usage.


2020 ◽  
Vol 184 ◽  
pp. 01102
Author(s):  
P Magudeaswaran. ◽  
C. Vivek Kumar ◽  
Rathod Ravinder

High-Performance Concrete (HPC) is a high-quality concrete that requires special conformity and performance requirements. The objective of this study was to investigate the possibilities of adapting neural expert systems like Adaptive Neuro-Fuzzy Inference System (ANFIS) in the development of a simulator and intelligent system and to predict durability and strength of HPC composites. These soft computing methods emulate the decision-making ability of human expert benefits both the construction industry and the research community. These new methods, if properly utilized, have the potential to increase speed, service life, efficiency, consistency, minimizes errors, saves time and cost which would otherwise be squandered using the conventional approaches.


2010 ◽  
Vol 13 (4) ◽  
pp. 699-713 ◽  
Author(s):  
Mohammad Muzzammil ◽  
Javed Alam

An accurate estimation of the maximum possible scour depth at bridge abutments is of paramount importance in decision-making for the safe abutment foundation depth and also for the degree of scour countermeasures to be implemented against excessive scouring. Most of the scour depth prediction formulae available in the literature have been developed based on the analysis of laboratory and field data using statistical methods such as the regression method (RM). The alternative approaches, such as artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS), are generally preferred to provide better solutions in cases where the available data is incomplete or ambiguous in nature. In the present study, an attempt has, therefore, been made to develop the ANFIS model for the prediction of scour depth at the bridge abutments embedded in an armored bed and make the comparative study for the performance of ANFIS over RM and ANN in modeling the scour depth. It has been found that the ANFIS model performed best amongst all of these methods. The causative variables in raw form result in a more accurate prediction of the scour depth than that of their grouped form.


Sign in / Sign up

Export Citation Format

Share Document