The Efficiency of Recombinant Alpha Eptacog in Haemostatis Management of Haemophilic Patients with Elective Arthroplasty

2017 ◽  
Vol 68 (8) ◽  
pp. 1931-1934
Author(s):  
Oana Viola Badulescu ◽  
Razvan Tudor ◽  
Mihaela Blaj ◽  
Bogdan Mihnea Ciuntu ◽  
Paul Dan Sirbu

Haemophilia is considered to be the most severe coagulopathy, characterized by a deficiency either of factor VIII (hemophilia A) or coagulation factor IX (hemophilia B), presenting various degrees of severity depending on the residual factor level. Haemarthrosis is the most common clinical expression of a haemophiliac patient. Its repetitive character will cause irreversible lesions in the joints, which mark the beginning of a chronic condition - haemophiliac arthropathy, which slowly develops throughout the patient�s life, leading eventually to ankylosis. Over time, these joints will require total prosthesis, in order to improve locomotor activity. Achieving effective hemostasis is an essential element for the possibility of performing this type of surgery, due to the increased risk of bleeding, of a vital nature, at this category of patients. A series of clinical trials have been carried out to research the role of the Eptacog Alpha Recombinant treatment in the reduction of bleeding in haemophiliac patients with present inhibitors, to whom total arthroplasty is carried out at the level of various joints. In this regard, this paper aims to highlight the effectiveness of Eptacog Alpha Recombinant in the management of haemostasis in haemophiliac patients, with indication of total endoprosthesis.

2019 ◽  
Vol 69 (12) ◽  
pp. 3702-3704
Author(s):  
Oana Viola Badulescu ◽  
Manuela Ciocoiu ◽  
Nina Filip ◽  
Vlad Vering

Hemophilia A is a hereditary coagulopathy caused by the deficiency of the coagulation factor VIII, whose main complication consists in disabling arthropathy. The most often affected joint is the one of the knee, due to which this article aims at presenting, on one hand, the role of continuous substitutive prophylactic treatment in preventing the onset of this complication and, on the other hand, the current view of orthopedic surgery in managing the above-mentioned complication. The continuous prophylactic treatment represents the best therapeutic conduct in preventing the onset of hemophilic arthropathy, yet this aspect is limited by two important factors: inappropriate medical support, dependence on the social and economic level of every country and inappropriate adherence of the patient to this thorough treatment, which represents a challenge for a life with no bleeding. Under the circumstances imposed by an insufficient substitutive treatment or by a deficient adherence of the patient to this, recurrent hemarthrosis shall lead to cartilage destruction and synovial hypertrophy (synovitis), which will impose, in time, total endoprosthesis in order to re-establish the motor function and to improve the life quality of the hemophilic patient. The surgery of the hemophilic patient is associated with an increased risk of hemorrhage and infection and it is practiced only with substitutive hematologic support. The key to the best results is the existence of a multidisciplinary experienced team, including an orthopedist, hematologist, physical therapist.


2018 ◽  
Vol 69 (6) ◽  
pp. 1541-1543
Author(s):  
Oana Viola Badulescu ◽  
Razvan Tudor ◽  
Wilhelm Friedl ◽  
Andrei Scripcaru ◽  
Paul Dan Sirbu

Type A haemophilia is a hereditary coagulopathy caused by coagulation factor VIII deficiency as part of the rare, life-threatening and at-risk group of diseases that has been attributed over time a life-saving substitution treatment providing to patients diagnosed with this pathology a hope for life and quality of life similar to that of healthy population. However, substitution treatment is very expensive so that nowadays globally most patients cannot benefit from proper healthcare. The quality of healthcare is dependent on the socio-economic level of each country, being decisively influenced by the power of the National Hemophilia Organizations to generate solidarity and support of decision-makers of each country. One of the bleeding manifestations specific to haemophilia is haemarthrosis. Each haemorrhagic episode causes locally a disorder that predisposes to relapse, with the onset of the main chronic complication of this condition, haemophilic arthropathy. It has a slow evolution throughout the life of the patient and generates in time severe sequelae (ankyloses) that require total arthroplasty. Effective hemostasis is the essential element for performing this type of orthopaedic surgery, due to bleeding risk that is of vital nature, in this category of patients. In this sense, this study aims to underline the efficacy of Moroctocog alfa in the management of haemostasis in haemophiliac patients with total endoprosthesis indication, aimed to reduce joint pain and improve locomotor function.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-17
Author(s):  
Dougald Monroe ◽  
Mirella Ezban ◽  
Maureane Hoffman

Background.Recently a novel bifunctional antibody (emicizumab) that binds both factor IXa (FIXa) and factor X (FX) has been used to treat hemophilia A. Emicizumab has proven remarkably effective as a prophylactic treatment for hemophilia A; however there are patients that still experience bleeding. An approach to safely and effectively treating this bleeding in hemophilia A patients with inhibitors is recombinant factor VIIa (rFVIIa). When given at therapeutic levels, rFVIIa can enhance tissue factor (TF) dependent activation of FX as well as activating FX independently of TF. At therapeutic levels rFVIIa can also activate FIX. The goal of this study was to assess the role of the FIXa activated by rFVIIa when emicizumab is added to hemophilia A plasma. Methods. Thrombin generation assays were done in plasma using 100 µM lipid and 420 µM Z-Gly-Gly-Arg-AMC with or without emicizumab at 55 µg/mL which is the clinical steady state level. The reactions were initiated with low (1 pM) tissue factor (TF). rFVIIa was added at concentrations of 25-100 nM with 25 nM corresponding to the plasma levels achieved by a single clinical dose of 90 µg/mL. To study to the role of factor IX in the absence of factor VIII, it was necessary to create a double deficient plasma (factors VIII and IX deficient). This was done by taking antigen negative hemophilia B plasma and adding a neutralizing antibody to factor VIII (Haematologic Technologies, Essex Junction, VT, USA). Now varying concentrations of factor IX could be reconstituted into the plasma to give hemophilia A plasma. Results. As expected, in the double deficient plasma with low TF there was essentially no thrombin generation. Also as expected from previous studies, addition of rFVIIa to double deficient plasma gave a dose dependent increase in thrombin generation through activation of FX. Interestingly addition of plasma levels of FIX to the rFVIIa did not increase thrombin generation. Starting from double deficient plasma, as expected emicizumab did not increase thrombin generation since no factor IX was present. Also, in double deficient plasma with rFVIIa, emicizumab did not increase thrombin generation. But in double deficient plasma with FIX and rFVIIa, emicizumab significantly increased thrombin generation. The levels of thrombin generation increased in a dose dependent fashion with higher concentrations of rFVIIa giving higher levels of thrombin generation. Conclusion. Since addition of FIX to the double deficient plasma with rFVIIa did not increase thrombin generation, it suggests that rFVIIa activation of FX is the only source of the FXa needed for thrombin generation. So in the absence of factor VIII (or emicizumab) FIX activation does not contribute to thrombin generation. However, in the presence of emicizumab, while rFVIIa can still activate FX, FIXa formed by rFVIIa can complex with emicizumab to provide an additional source of FX activation. Thus rFVIIa activation of FIX explains the synergistic effect in thrombin generation observed when combining rFVIIa with emicizumab. The generation of FIXa at a site of injury is consistent with the safety profile observed in clinical use. Disclosures Monroe: Novo Nordisk:Research Funding.Ezban:Novo Nordisk:Current Employment.Hoffman:Novo Nordisk:Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1132-1140 ◽  
Author(s):  
Ou Cao ◽  
Eric Dobrzynski ◽  
Lixin Wang ◽  
Sushrusha Nayak ◽  
Bethany Mingle ◽  
...  

Abstract Gene replacement therapy is complicated by the risk of an immune response against the therapeutic transgene product, which in part is determined by the route of vector administration. Our previous studies demonstrated induction of immune tolerance to coagulation factor IX (FIX) by hepatic adeno-associated viral (AAV) gene transfer. Using a regulatory T-cell (Treg)–deficient model (Rag-2−/− mice transgenic for ovalbumin-specific T-cell receptor DO11.10), we provide first definitive evidence for induction of transgene product-specific CD4+CD25+ Tregs by in vivo gene transfer. Hepatic gene transfer–induced Tregs express FoxP3, GITR, and CTLA4, and suppress CD4+CD25− T cells. Tregs are detected as early as 2 weeks after gene transfer, and increase in frequency in thymus and secondary lymphoid organs during the following 2 months. Similarly, adoptive lymphocyte transfers from mice tolerized to human FIX by hepatic AAV gene transfer indicate induction of CD4+CD25+GITR+ that suppresses antibody formation to FIX. Moreover, in vivo depletion of CD4+CD25+ Tregs leads to antibody formation to the FIX transgene product after hepatic gene transfer, which strongly suggests that these regulatory cells are required for tolerance induction. Our study reveals a crucial role of CD4+CD25+ Tregs in preventing immune responses to the transgene product in gene transfer.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2594-2594
Author(s):  
Frank Michael Horling ◽  
Peter Allacher ◽  
Herwig Koppensteiner ◽  
Werner Engl ◽  
Fritz Scheiflinger ◽  
...  

Abstract Background and objectives BAX 855 (Antihemophilic Factor [Recombinant] pegylated, rurioctocog alfa pegol) is an extended half-life (EHL) recombinant human coagulation factor VIII (rFVIII) modified with polyethylene glycol (PEG) (Turecek et al., 2012). It was recently approved in the US and Japan for on-demand treatment of bleeding events and for prophylactic treatment for patients with congenital severe hemophilia A. The efficacy and safety of BAX 855 were extensively studied during clinical development of this compound (Konkle et al., 2015). The assessment of BAX855 immunogenicity was of particular interest because the development of neutralizing antibodies (FVIII inhibitors) is the most serious complication following replacement therapies with FVIII products. FVIII inhibitors develop in about 20-32% of previously untreated patients (Gouw SC et al., 2013) and with a rate of 1.55- 3.8 per 1000 patients per year in previously treated patients (Kempton CL, 2010) with severe hemophilia A. To fully understand the potential of BAX855 to induce antibody responses, both FVIII inhibitors and total FVIII-binding antibodies were assessed. Furthermore, potential antibody development against PEG-FVIII, PEG and CHO proteins was investigated. Methods The clinical protocols (ClinicalTrials.gov identifier: NCT02585960, NCT02210091, NCT01736475, NCT01913405, NCT01945593, NCT01599819, NCT02615691) and the methods used for antibody analytics (Whelan et al 2013; Lubich et al 2016) were previously described. ELISA technologies were used for the analysis of total binding antibodies, the Nijmegen modification of the Bethesda assay was used for the detection of FVIII inhibitors. Correlation analyses were done to assess any potential correlation between the development of antibodies and potential adverse events. Results None of the 243 subjects (6 PUPs and 237 PTPs) included in the analysis developed FVIII inhibitors (≥ 0.6 BU/mL) A total of 44 subjects tested positive for binding antibodies against FVIII, PEG-FVIII or PEG at single time points. 28 of these 44 subjects showed pre-existing antibodies against FVIII, PEG-FVIII, or PEG prior to first exposure to BAX 855, which disappeared during the study. 13 subjects who tested negative at screening developed transient antibodies against FVIII, PEG-FVIII, or PEG at one or two consecutive study visits after exposure to BAX 855. Antibodies were transient and not detectable at subsequent visits or at completion of the study. Five subjects showed positive results for binding antibodies at study completion or at the time of the data cutoff. No conclusion can be drawn whether these antibodies are of transient or persistent nature. There was no confirmed causal relationship between the appearance of binding antibodies against FVIII, PEG or PEG-FVIII and adverse events, nor was there an impact on hemostatic efficacy in any of the 44subjects. No subject had pre-existing antibodies or developed de novo antibodies to CHO proteins during the study at any time point. Conclusion Our data indicate that BAX855 did not show an increased risk for PTPs to develop FVIII inhibitors. We did not see any FVIII inhibitor development in PUPs, but the small number of overall exposures does not allow general conclusions for PUPs. Importantly, the data suggest that BAX855 did not induce immune responses associated with impaired treatment efficacy or with altered PK parameters. Disclosures Horling: Shire: Employment. Allacher:IMC Krems: Research Funding. Koppensteiner:Shire: Employment. Engl:Shire, formerly Baxalta and Baxter: Employment, Equity Ownership. Scheiflinger:Shire: Employment, Research Funding. Abbuehl:Baxalta (now part of Shire): Employment. Reipert:Shire: Employment.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2670-2676 ◽  
Author(s):  
Jane D. Mount ◽  
Roland W. Herzog ◽  
D. Michael Tillson ◽  
Susan A. Goodman ◽  
Nancy Robinson ◽  
...  

Abstract Hemophilia B is an X-linked coagulopathy caused by absence of functional coagulation factor IX (FIX). Using adeno-associated virus (AAV)–mediated, liver-directed gene therapy, we achieved long-term (> 17 months) substantial correction of canine hemophilia B in 3 of 4 animals, including 2 dogs with an FIX null mutation. This was accomplished with a comparatively low dose of 1 × 1012 vector genomes/kg. Canine FIX (cFIX) levels rose to 5% to 12% of normal, high enough to result in nearly complete phenotypic correction of the disease. Activated clotting times and whole blood clotting times were normalized, activated partial thromboplastin times were substantially reduced, and anti-cFIX was not detected. The fourth animal, also a null mutation dog, showed transient expression (4 weeks), but subsequently developed neutralizing anti-cFIX (inhibitor). Previous work in the canine null mutation model has invariably resulted in inhibitor formation following treatment by either gene or protein replacement therapies. This study demonstrates that hepatic AAV gene transfer can result in sustained therapeutic expression in a large animal model characterized by increased risk of a neutralizing anti-FIX response.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3182-3182
Author(s):  
Patrick Ellsworth ◽  
Dougald Monroe ◽  
Maureane Hoffman ◽  
Nigel S Key

Abstract Introduction Hemophilia A (HA) is an inherited bleeding disorder caused by the deficiency of coagulation factor VIII (FVIII) resulting in severe hemorrhage if untreated. Recombinant and plasma derived FVIII products have long been the standard of care in hemophilia. However, approximately 25-30% of patients with severe HA develop inhibitors, neutralizing alloantibodies to FVIII, a significant complication in the treatment of patients with HA that leads to bleeding despite factor therapy. First approved for bleed prophylaxis in HA with inhibitors in the US by the FDA in 2018, emicizumab (Genentech, USA) has initiated a new era of HA treatment. This drug is a bispecific, monoclonal antibody that binds to activated Factor IX (FIXa) and Factor X (FX), mimicking activated FVIII (FVIIIa) by bringing FIXa and FX into proximity to enable FX activation, even in the presence of inhibitors. Emicizumab prophylaxis drastically reduces bleed episodes. However, thromboses and thrombotic microangiopathy (TMA) were observed in trials, all associated with concomitant use of activated prothrombin complex concentrates (aPCC) (Callaghan et al., 2021). The mechanism of this devastating condition is uncertain, as emicizumab is not known to bind to phospholipid or vascular surfaces. We report that FX is more readily activated by FIXa and emicizumab on endothelium that has been activated by tumor necrosis factor alpha (TNF). This finding may partially explain the development of TMA in these patients. Methods We utilized novel, microfluidic devices that are inexpensive to manufacture and were modified from a technique previously described (Alapan et al. 2016). These devices are fabricated using a laser cut double-sided adhesive film sandwiched between a clear, gas-permeable polymer (Ibidi, Germany) and an acrylic top that is laser cut (Universal Laser Systems Inc., USA) (Figure 1). Human umbilical endothelial cells (HUVEC, Lonza, Switzerland) were harvested at passage 3 to 4 and seeded into the devices. These were then cultured under flow conditions using a non-peristaltic, air-driven pump (Ibidi GmbH, Germany) to achieve a confluent and quiescent endothelial surface. HUVEC are then activated by incubating with 5 nM TNF in serum-free growth medium for 4 hours. This treatment induced markers of endothelial activation without gross apoptosis. Non-activated HUVEC were incubated with endothelial cell growth medium (2% serum) until time of experiments. Factors IXa, X (Haemtech, USA), and/or emicizumab (discarded clinical material) were mixed in HEPES-buffered saline with 5 mM calcium chloride for all experimental conditions. Concentrations used of FIXa (30 nM), FX (170 nM), and emicizumab (55 ug/mL) were constant for all conditions. Combinations of factors and emicizumab were then incubated in the endothelialized device for 30 minutes at 37° C. The entire volume of the mixture was then aspirated (20 uL) and stored at -80° C. FXa activity was assayed on the effluent for 60 minutes using a chromogenic FXa substrate (Pefachrome, Pentapharm, Switzerland). Results No significant generation of Xa was noted in the presence of healthy or activated endothelium with emicuzumab alone, emicizumab and FIXa, emicizumab and FX, or factors IXa and X. Median Xa generation observed with the combination of emicizumab, FIXa, and FX on healthy endothelium was 2 nM. Median Xa generation with the same combination on activated endothelium was 8.1 nM, a four-fold increase (P = 0.028, Mann-Whitney test) (Figure 2). Discussion Emicizumab represents an evolving standard of care for hemophilia A. Considering data showing diminishing FVIII expression in the months to years after AAV gene therapy, (Pasi et al., 2020) it may well be the dominant treatment paradigm in HA for some time. However, much remains to be answered in the use of emicizumab, and the mechanism of thrombosis and TMA with concomitant aPCC use has resulted in the avoidance of aPCC use for breakthrough bleeding in patients on emicizumab therapy, even up to 6 months after cessation. Our data demonstrate that activated endothelial cells promote FX activation more readily than quiescent endothelial cells in the presence of FIXa and emicizumab. These findings demonstrate the potential of thrombotic angiopathy in an in vitro system. Further investigation of the interaction of endothelium with FIXa, FX, and FVIIIa-mimetic antibodies is warranted. Figure 1 Figure 1. Disclosures Ellsworth: Takeda: Other: Salary supported as part of NHF-Takeda Clinical Fellowship Award. Monroe: Medexus Pharmaceuticals: Consultancy; Takeda: Consultancy; Otello Medical: Current equity holder in publicly-traded company. Hoffman: Takeda: Research Funding; CSL Behring: Consultancy; Sanofi: Consultancy; BPL (Bio Products Laboratory): Consultancy. Key: BioMarin: Honoraria, Other: Participation as a clinical trial investigator; Takeda: Research Funding; Grifols: Research Funding; Uniqure: Consultancy, Other: Participation as a clinical trial investigator; Sanofi: Consultancy.


2020 ◽  
Vol 120 (10) ◽  
pp. 1357-1370
Author(s):  
Georg Gelbenegger ◽  
Christian Schoergenhofer ◽  
Paul Knoebl ◽  
Bernd Jilma

AbstractHemophilia A, characterized by absent or ineffective coagulation factor VIII (FVIII), is a serious bleeding disorder that entails severe and potentially life-threatening bleeding events. Current standard therapy still involves replacement of FVIII, but is often complicated by the occurrence of neutralizing alloantibodies (inhibitors). Management of patients with inhibitors is challenging and necessitates immune tolerance induction for inhibitor eradication and the use of bypassing agents (activated prothrombin complex concentrates or recombinant activated factor VII), which are expensive and not always effective. Emicizumab is the first humanized bispecific monoclonal therapeutic antibody designed to replace the hemostatic function of activated FVIII by bridging activated factor IX and factor X (FX) to activate FX and allow the coagulation cascade to continue. In the majority of hemophilic patients with and without inhibitors, emicizumab reduced the annualized bleeding rate to almost zero in several clinical trials and demonstrated a good safety profile. However, the concurrent use of emicizumab and activated prothrombin complex concentrate imposes a high risk of thrombotic microangiopathy and thromboembolic events on patients and should be avoided. Yet, the management of breakthrough bleeds and surgery remains challenging with only limited evidence-based recommendations being available. This review summarizes published clinical trials and preliminary reports of emicizumab and discusses the clinical implications of emicizumab in treatment of hemophilia A.


Author(s):  
U. Seligsohn ◽  
C.K. Kasper ◽  
B. Østerud ◽  
S.I. Rapaport

Six brands of Factor IX concentrates were evaluated for their Factor VII content and for the presence of activated Factor VII through use of a coupled amidolytic assay, insensitive to activated Factor VII, and a clotting assay, sensitive to activated Factor VII. The Factor VII content of the concentrates studied (except for one concentrate purposely produced to exclude Factor VII) varied between 33 to 621 U per vial. All concentrates contained activated Factor VII, as indicated by ratios of Factor VII clotting activity to Factor VII amidolytic activity of from 1.6 to 21.5. Higher ratios were found in two brands of activated concentrates than in non-activated concentrates. In 10 patients infused with Factor IX concentrates, plasma Factor VII activity rose strikingly in the clotting assay but not in the amidolytic assay. Thus, the elevated Factor VII levels by the clotting assay after infusion of Factor IX concentrates stem from circulating activated Factor VII. A mean intravascular half-disappearance time of 144 min was found for activated Factor VII. Its persistence in the circulation makes it important to evaluate the possible role of activated Factor VII in the thrombogenicity of Factor IX concentrates and in their reported effectiveness in treating bleeding in Hemophilia A patients with inhibitors.


Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5514-5522 ◽  
Author(s):  
Emily K. Waters ◽  
Ryan M. Genga ◽  
Michael C. Schwartz ◽  
Jennifer A. Nelson ◽  
Robert G. Schaub ◽  
...  

Abstract Hemophilia A and B are caused by deficiencies in coagulation factor VIII (FVIII) and factor IX, respectively, resulting in deficient blood coagulation via the intrinsic pathway. The extrinsic coagulation pathway, mediated by factor VIIa and tissue factor (TF), remains intact but is negatively regulated by tissue factor pathway inhibitor (TFPI), which inhibits both factor VIIa and its product, factor Xa. This inhibition limits clot initiation via the extrinsic pathway, whereas factor deficiency in hemophilia limits clot propagation via the intrinsic pathway. ARC19499 is an aptamer that inhibits TFPI, thereby enabling clot initiation and propagation via the extrinsic pathway. The core aptamer binds tightly and specifically to TFPI. ARC19499 blocks TFPI inhibition of both factor Xa and the TF/factor VIIa complex. ARC19499 corrects thrombin generation in hemophilia A and B plasma and restores clotting in FVIII-neutralized whole blood. In the present study, using a monkey model of hemophilia, FVIII neutralization resulted in prolonged clotting times as measured by thromboelastography and prolonged saphenous-vein bleeding times, which are consistent with FVIII deficiency. ARC19499 restored thromboelastography clotting times to baseline levels and corrected bleeding times. These results demonstrate that ARC19499 inhibition of TFPI may be an effective alternative to current treatments of bleeding associated with hemophilia.


Sign in / Sign up

Export Citation Format

Share Document